Searches for Supersymmetry at HERA

Claus Horn (DESY)
On behalf of the H1 and ZEUS collaborations

14th International Conference on Supersymmetry and the Unification of Fundamental Interactions

June 12–17 Irvine, California, U.S.A.
Outline

- HERA status
- RPV supersymmetry
- Searches for squarks
- Stop decays
- Search for gaugino production
- Searches for gravitinos
- Conclusions

Focus on recent results and updates since SUSY05.

For non-SUSY searches at HERA see talk by Linus Lindfeld
HERA Running

$e^{\pm} \ 27 \ \text{GeV} \ \Rightarrow \ \sqrt{s}=320 \ \text{GeV} \ \Rightarrow \ p \ 920 \ \text{GeV}$

HERA I: 1993-2000
Luminosity: $\sim 130 \ \text{pb}^{-1}$
85% e^+, 15% e^-

HERA II since 2002:
Instant. luminosity increased by factor 3
Polarised e^{\pm} beam: $P_e \sim 36\%$
Luminosity: $\sim 240 \ \text{pb}^{-1}$ until now
15% e^+, 85% e^-

Very efficient running in 2004+2005+2006 (on-going)

HERA II data analysis started. (This talk only HERA I data.)
RPV Supersymmetry

Multiplicative, discreet Symmetry: \(R_p = (-1)^{3B+L+2S} +1 \) for SM particles
\(-1\) for SUSY particles

RPV: Allows single sparticle production; LSP can decay to SM particles

Additional trilinear terms in superpotential:

\[
W_{R_P} = \lambda_{ijk} L_i L_j \tilde{e}_k + \lambda'_{ijk} L_i Q_j \tilde{d}_k + \lambda''_{ijk} u_i \tilde{d}_j \tilde{d}_k + \ldots
\]

Leading order diagrams at HERA from \(\lambda'_{ijk} \) term.

- Squark production
- Gaugino production
Reminder: H1 Squark Searches

Resonant squark production in s-channel. Squark masses up to $\sqrt{s}=320\text{GeV}$.

R_p-violating decay:

Example of gauge decays:

- Many final states considered:

 $eq, vq, eMJ, eeMJ, \mu\mu MJ, \nu eMJ, \nu \nu MJ$ \hspace{0.5cm} $\sum BR \sim 100\%$

- No deviation from SM observed in any of these channels.

\rightarrow Large region of SUSY parameter space can be excluded.
Examples for λ'_{l1j1}:

For strength $\lambda'=0.3$ squark masses up to 275 GeV excluded at 95% CL.
ZEUS Stop Search

MSSM parameter space:
- $100 \text{ GeV} < M_2 < 300 \text{ GeV}$
- $-300 \text{ GeV} < \mu < 300 \text{ GeV}$
- $\tan(\beta) = 6$

Stop is lightest squark in most of parameter space.
Dominant decay channels:

Electron channels
- e^+-jet channel
- e^+-multi jet channel

Neutrino channel
- ν-multi jet channel
ZEUS Stop Search: Results

No deviation from Standard Model was found.
Calculate combined limits for three channels.
For $\lambda=0.3$ values up to $M_{\text{stop}}=270$ GeV can be excluded at 95% CL.
Scenarios where $\tilde{\chi}^0_1$ is not the LSP or $m_{\chi^0} < 30$ GeV were discarded.

Limit for mSUGRA:

Small influence of M_2 and μ (red region).
H1: Bosonic Stop Decay

Mass spectrum complementary to previous squark search:
\[m(\tilde{b}) + m(W^\pm) < m(\tilde{t}_1) < m(\tilde{\chi}_0^0) + m(t), \quad m(\tilde{\chi}_+^+) + m(b) \]

Signatures:
- \(\text{jet} + l + p_T, \text{miss} \)
- \(3\text{jets} + p_T, \text{miss} \)

Excess in \(\text{jet} + \mu + p_T, \text{miss} \) (obs/exp=8 / 2.7±0.5)
not confirmed by other channels.

Limits in \(m(\tilde{b}) - m(\tilde{t}) \) plane:
\(m(\tilde{t}) \) up to 275 GeV excl. at 95% CL

Reminder:

Excess seen by H1/ZEUS

- [H1, prelim., DIS04]

Used data set: 68 pb\(^{-1}\) (\(\sqrt{s}=319 \) GeV) + 38 pb\(^{-1}\) (\(\sqrt{s}=301 \) GeV)
If $M_\text{squark} \gg M_\text{slepton}$:

s-channel suppressed \Rightarrow t-channel dominant, probing λ'_{ijk}

Gaugino production:

$\sigma \sim (\lambda')^2$

Independent of squark masses!

Gaugino Decay:

Electron channel

BRs add up to almost 100%.

Neutrino channel

$\tilde{\chi}^\pm$ decay to same final states
Gaugino Search: Selection

Electron channel shown at SUSY2005.

Neutrino channel:
- $E_T > 50$ GeV
- $P_T > 20$ GeV
- ≥ 1 jet ($p_T>10$ GeV)
- reject events with electron

Analysed ZEUS data: 121pb$^{-1}$

Discriminant method used to optimise signal-to-background.

Data shows no signal.
Excluded region from scan with $m_{\chi^\pm} \leq 103$ GeV (LEP limit).

Results from both channels combined to calculate limits in MSSM:

new results!
H1: Gravitino Search

MSSM → GMSB: LSP is gravitino

Signature:
isol. $\gamma^+p_{T,m_{\text{miss}}} + 1\text{jet}$

No deviation from SM observed.

Used Lumi:
e^+p: 64 pb$^{-1}$
e^-p: 14 pb$^{-1}$

High squark masses → no constraints from APV, CCU → λ' can be large!
Gravitino Search by ZEUS

Using multivariate discriminant method to optimise signal-to-background.

Variables used for discriminant:

Used Lumi: 121 pb$^{-1}$ ($e^{+}p$ and $e^{-}p$!)

No excess in signal region.
Gravitino Search by ZEUS

Limits for different strength of λ' coupling:

\[
\begin{aligned}
&\chi_1^0 \to G\gamma \\
\sqrt{s}=233 \text{ GeV}, N=1 \\
&M/\Lambda=1.1, \tan\beta=2, \mu<0
\end{aligned}
\]

For $\lambda'_{111}=1$ masses up to $m(\tilde{e})<260$ GeV, and $m(\tilde{\chi})<150$ GeV can be excl. at 95% CL.

Compared to H1 result:
- More luminosity used
- Also e^-p data included (larger coupling)
- Use of discriminant gives higher sensitivity
- Slightly different parameters
Gravitino Search by ZEUS

Limits for different couplings:

Limits for different N:

Limits for different M/Λ, $\text{sign}(\mu)$ and $\tan\beta$:

Limits valid in large part of GMSB parameter space!
Conclusions

• HERA is an ideal place to search for RPV supersymmetry

• Many searches for supersymmetry have been performed with HERA I data
 - Squark production in MSSM and mSUGRA
 - Gaugino production in MSSM
 - Gravitinos in GMSB
 ➔ No evidence for supersymmetry was found.

• HERA II running very efficiently
 - Collected HERA II luminosity already twice of HERA I!
 - Search results from HERA II expected soon!