Exotic colored particles at the LHC

Junhai Kang, University of Maryland

General definition: any non standard model fields could be called exotic...

- New Physics typically predicts a set of exotic fields
- SUSY partners. Similar to SM particles but with different spins
- KK modes. Similar to SM particles but with different masses
- New Physics generally solve some theoretical problems
- The Signatures are well studied...
- "Standard Exotics"

Exotic Exotics!

- Distinguished signatures at LHC
- Background free and/or strongly produced at LHC.
- Be prepared and do not miss them...
- Colored Particles—Large Production Rate

Di-quark in 6 representation of SU(3). (with R. Mohapatra)

- SUSY $SU(2)_L \times SU(2)_R \times SU(4)_c$
- See-saw for neutrino masses
- neutron-anti-neutrino oscillation
- light Δ_{uu} with $M \sim TeV$
- large coupling to the third generation

Like-sign Top pair Production

- QCD—pair production of top-anti-top.
- Single Production: $uu \to 6 \to tt \to bbW + W + \to bbEE$
- Like-sign dilepton with two b jets
- Background—misidentifications.

General Di-quark singature and b charge identification

- QCD background is large for two jets events.
- identify the di-quark form the third generation.
- Signature of light Δ_{dd} , $uu \to 6 \to bb$
- Signature of light Δ_{ud} , $ud \to 6 \to tb \to bbW + \to bbE$
- Making use of the information from the third generation jets!

Quasi-stable heavy colored particles (with P. Langacker and B. Nelson)

- Ordinary families $3 \times (L_{-\frac{1}{2}}, Q_{\frac{1}{6}}, \overline{u}_{-\frac{2}{2}}, \overline{d}_{\frac{1}{2}}, e_1^+, \overline{\nu}_0)$ with Q' = 1
- Higgs doublets $h_{u\frac{1}{2}}$, $h_{d-\frac{1}{2}}$ with Q'=-2
- Exotic quarks $2 \times (D_{t-\frac{1}{3}}, \overline{D}_{\frac{t_1}{3}})$ with Q' = -3, transforming as (3,1) under $SU(3) \times SU(2)$
- Exotic leptons $2 \times (L_{s-\frac{1}{2}}, \overline{L}_{\frac{s_1}{2}})$ with Q' = -2, transforming as (1,2) under $SU(3) \times SU(2)$
- SM singlets S with Q' = 4, T with Q' = 6,

Cosmological bound from BBN

Figure 1: Astrophysical bound on the long lived particles (From M. Kawasaki, K. Kohri and T. Moroi, arXiv:astro-ph/0402490)

Collider Signature of quasi-stable colored particles

- Hadronization. Charged R-hadron vs neutral R-hadron.
- Hadron calorimeter. Small amount of energy deposited here.
- O(1)GeV/collision and O(10) collisions
- Pass level one calorimeter trigger?
- Muon chamber. Only charged R-hadron will leave a track

SUSY Di-quark and Lepto-quark (with P. Langacker and B. Nelson)

Table 1: Decomposition of the E_6 fundamental representation **27** under SO(10) and SU(5), and their $U(1)_{\chi}$, $U(1)_{\psi}$, $U(1)_{\eta}$, secluded sector $U(1)'_s$, and neutral-N model $U(1)_N$ charges.

SO(10)	SU(5)	$2\sqrt{10}Q_{\chi}$	$2\sqrt{6}Q_{\psi}$	$2\sqrt{15}Q_{\eta}$	$2\sqrt{15}Q_s$	$2\sqrt{10}Q_N$
16	$10 \ (u,d,\overline{u},\overline{e})$	-1	1	-2	-1/2	1
	$\overline{5} \ (\overline{d}, \nu, e)$	3	1	1	4	2
	$1\overline{N}$	-5	1	-5	-5	0
10	$5(D,H'_u)$	2	-2	4	1	-2
	$\overline{5} \ (\overline{D}, H'_d)$	-2	-2	1	-7/2	-3
1	$1 S_L$	0	4	-5	5/2	5

SUSY model with Di-quarks and Lepto-quarks

- $W_{L_Q} \sim \lambda_6 D u^c e^c + \lambda_7 D Q L + \lambda_8 D d^c \nu^c$
- $W_{DQ} \sim \lambda_9 DQQ + \lambda_{10} Du^c d^c$
- R-parity still conserved.
- D and Higgs have similar R-parity assignments.
- if only one set of superpotential, B and L conserved

Exotics and Simulation Software

- add Di-quark into Comphep?
- deal with special color structure in Comphep
- color flow in PYTHIA?
- it is interesting and important to make the simulation software easy extendable.

Signatures and Backgrounds

- isolate from the SUSY sample
- $\bullet \ \Delta = |m_{D_{1/2}} m_{D_0}|$
- case 1: $\Delta < m_{LSP}$
 - Boson \rightarrow 2 hard jets or 1 jet + lepton
 - fermions hard to isolate from SUSY sample
- case 2: $\Delta > m_{LSP}$ but smaller than other super-partners
 - Boson \rightarrow 2 hard jets (or 1 jet + lepton)
 - if fermion is heavier. fermion \rightarrow 2 hard jets (or 1 jet + lepton) + missing ET
- case 3: $\Delta > min(m_{\tilde{g}}, m_{\tilde{f}})$. Similar to MSSM. Hard to isolate from SUSY sample

Two different type exotic particles: Example I—Triquark

- scaler 6 and fermion $\overline{10}$ of SU(3)
- Y1 6uu and Y2 $6u\overline{10}$
- m_6 and m_{10}
- decay production of $\overline{10}$, 3 jets final states
- $33 \rightarrow 6 \rightarrow 3 + \overline{10} \rightarrow 4 \ jets$
- Three-jet invariant mass peak.

Two different type exotic particles: Example II—leptodiquark

- scaler 6_1s and fermion $\overline{6}_{2f}$ of SU(3)
- Y1 $6_{1s}uu$ and Y2 $6_{1s}\overline{6}_{2f}e$
- m_{6s} and m_{6f}
- decay production of $\overline{6}_{2f}$, 2 jets + lepton final states
- $33 \rightarrow 6_{1s} \rightarrow 3 + \overline{6}_{2f} \rightarrow 3 \ jets + lepton$

Quirks and Strings (with M. Luty and S. Nasri)

- N flavor of exotic colored particle D_i with mass $m_D \sim TeV$
- Global flavor SU(N) symmetry between the exotic particles
- Promote to local SU(N) symmetry
- Become strongly coupled at IR.
- $\Lambda \sim 100 eV$

- like QCD with only heavy quark and no light quark
- Pair produced and attached by a long string that never break!
- The string could extend as long as 10 meters.
- ullet strong interactions \to string interactions
- \bullet "quark" \rightarrow "quirk"

"InfraColor"

Extend standard model gauge group:

•
$$SU(N_c)_{IC} \times SU(3)_C \times SU(2)_W \times U(1)_Y$$

- $Q \sim (N, 3, 1)_{-1/3}$
- $\overline{Q} \sim (\overline{N}, \overline{3}, 1)_{1/3}$
- $L \sim (N, 1, 2)_{1/2}$
- $\overline{L} \sim (\overline{N}, 1, 2)_{-1/2}$
- $5 + \overline{5}$ of SU(5)
- $\Lambda_{IC} \ll \Lambda_{QCD}$

Quirks at the LHC

Figure 2: $\sigma \sim pb$ (strong production)

- $r_{max} \sim \frac{m_Q}{\Lambda_{IC}^2} \sim 10m(\frac{m_Q}{TeV})(\frac{\Lambda_{IC}}{100eV})^2$
- re-annihilation?

Cosmology Bound

- BBN $\rightarrow \Lambda_{IC} < 100 eV$ or $\Lambda_{IC} > 10 MeV$
- quirk life time $< \mu s$
- or low reheating temperature

Definition of curvatures

Curvature in muon chamber

Definition of kinetic variables

$m_Q = 500 \; {\rm GeV}, \; \Lambda = 100 \; {\rm eV}$

$m_Q = 500 \; {\rm GeV}, \; \Lambda = 100 \; {\rm eV}$

Definition of kinetic variables

Returned Quirk hit muon chamber

$$m_Q=500~{\rm GeV},\,\Lambda=100~{\rm eV}$$

Time delay between the two hits on muon chamber

Timing is Everything...

LHC bunch structure

Timing gaps $\sim \mu s$

Conclusion

- Like-sign top production form Diquark 6 decay.
- Quasi-stable Colored Particles at LHC
- SUSY version of Di-quark and Lepto-quark
- signature of Tri-quark and Lepto-diqiark.
- Quirks and Strings