SUSY Higgs Searches at DØ, Tevatron

SUSY'06, University of California, Irvine June 12-17, 2006

Prolay Kumar Mal
University of Notre Dame
(for DØ Collaboration)

Outline

- MSSM Higgs
- DØ & Tevatron
- DØ search for Neutral MSSM Higgs (Φ^0)
 - Φ^0 b(b) \rightarrow bbb(b)
 - $\Phi^0 X \rightarrow \tau^+ \tau^- X$
- Future Prospects
- Summary & Outlook

MSSM Higgs

- MSSM posits two complex Higgs doublet fields
 - H_u (H_d) couple to up- (down-) type fermions
 - 5 physical Higgs bosons
 - h, H (CP-even), A (CP-odd) and H[±]
 - h predicted to be light: m_h < m_H and m_h ≤ 130-140 GeV
 - LEP has the limit m_h ≥ 92 GeV
- At tree level, two independent parameters:
 - \mathbf{m}_{Δ}
 - $tan\beta = \langle H_u \rangle / \langle H_d \rangle$: ratio of vacuum expectation values
- At large tanβ, the coupling of h/H/A (≡Φ⁰) with 'down'-type quark, viz., bottom quark enhances over the SM one
 - The production cross-section enhancement by a factor of tan²β

MSSM Higgs

- At high tan β , A is almost degenerate with h/H
 - $\sigma(A) \approx \sigma(h/H), \Gamma(A) \approx \Gamma(h/H)$
 - Br(A→bb) ≈ Br(h/H→bb) ≈ 90%
 - Another 10% is Br(A/h/H $\rightarrow \tau^+\tau^-$)
 - To search for h/H/A (≡ Φ^0), Φ^0 b(b)→bbb(b) and Φ^0 X → $\tau^+\tau^-$ X are the best channels

$$\sigma(b\overline{b}A) \times BR(A \to b\overline{b}) \cong \sigma(b\overline{b}A)_{SM} \times \frac{\tan \beta^2}{(1+\Delta_b)^2} \times \frac{9}{(1+\Delta_b)^2+9}$$

Radiative correction term, dependent on various parameters. 2 benchmark scenarios ("m_b-max" & "no-mixing") are studied.

	m_h – max	no-mixing		
M_{SUSY}	1 <i>TeV</i>	2TeV		
X_{t}	2TeV	0		
M_2	200 GeV	200GeV		
μ	$\pm 200 GeV$	$\pm 200 GeV$		
$m_{\overline{g}}$	800GeV	1600 <i>GeV</i>		

M. Carena et al.,hep/ph-0511023

Upgraded DØ Run II detector

- Excellent Tracking system
 - Secondary vertex reconstruction;b-tagging
 - Track triggering and τ identification
- Hermetic calorimeter
 - Jet triggering & reconstruction
 - τ lepton identification
- Extended coverage for muon detector (|η|<2.)
 - Crucial for μ and τ identification

Tevatron Performance

Φ^0 b(b) \rightarrow bbb(b) Analysis

- 260 pb⁻¹of D0 data
 - Multijet Trigger selection: ≥3 jets with ET≥15GeV
- Event Selection
 - Optimised E_T threshold on leading jets for each Higgs mass point
 - Secondary Vertex (SVT) tagging for the b-jet selection: double and triple btagged events
- Backgrounds
 - QCD fake: jjjj (Data)
 - QCD heavy flavor (HF):
 - bbjj, ccjj, cccc, bbcc, bbbb (Data)
 - Other: Z(bb,cc), tt ... (MC)
- Event Simulation
 - SM Higgs ... PYTHIA
 - signal rate and kinematics adjusted to NLO cross section (PRL 94, 031902(2005) Dawson et.al)
 - Background
 - PYTHIA,ALPGEN,MADGRAPH
- Look for the excess in dijet mass

Φ⁰b(b)→bbb(b) Background

- Estimation of "mis-tag" rate as a function of p_T and η from full multijet data i.e., events with ≥0 b-tagged jets
 - The "mis-tag" rate is corrected for heavy flavour component
- Normalisation of HF MC from double b-tagged data
- (double b-tagged data) x (mis-tag rate) = (triple b-tagged backgrounds)
- Fitting dijet mass (from leading E_T jets) distribution outside the signal region (± 1σ around the peak) in the triple b-tagged events

Φ^0 b(b) \rightarrow bbb(b) Limit

- No excess over background events observed
- Limits on production cross section & $tan\beta$ vs. m_A plane are set for two benchmark scenarios "no mixing" & "maximal mixing"
 - At 95% CL, limit on $tan\beta$ is down to 50, depending on m_A and MSSM scenario PRL 95, 151801 (2005)

For m_A =120 GeV: σ < 31 pb-1 @ 95% CL, $tan\beta$ < 55 @ 95% CL (Max Mixing)

$\Phi^0 X \rightarrow \tau^+ \tau^- X$ Analysis

- Large production cross-section
- Jets from hadronic τ -decays are distinct from the QCD ones
- Event signature $\tau^+\tau^-$
 - Hadronic decay of one of the τ 's while the other one decays into electron or muon (electron/muon, τ-jet and missing transverse energy)
 - Both τ 's decay into leptons (electron, muon and missing transverse energy)
- **Backgrounds:**
 - **Z**⁰-production: largest irreducible background
 - $Z^0/\gamma*\rightarrow ee/\mu\mu$, multi-jet, W \rightarrow Iv+jet (rejected with M_W<20 GeV) ,Diboson (WW,WZ,ZZ), top pair production
- 325 pb⁻¹ of data, recorded by single electron/muon Trigger
- Final discrimination variable between signal and background through the reconstruction of visible mass, $M_{vis} = \sqrt{(p_{\tau 1, vis} + p_{\tau 2, vis} + p_E)^2}$
- **Simulation**
 - Pythia 6.2 (background), FeynHiggs 2.3 (Signal cross section)

Identification of τ lepton

 τ-jet are quite narrow and have less number of tracks/neutral pions, in comparison with QCD jets. Three types of τ's are considered

Application of Neural Network for τ identification (Identical to Z→τ⁺τ⁻ cross section measurement; [PRD 71, 072004 (2005)])- Usage of profile, isolation, etc.

$\Phi^0 X \rightarrow \tau^+ \tau^- X$ Results

- Combination of three channels: $e+\tau_h$, $\mu+\tau_h$, $e+\mu$
- Comparison between Signal, background and data after final event selection $[\sigma_{total} = \sqrt{(\sigma_{stat}^2 + \sigma_{syst}^2)}]$

•		*				*		
	Data	Sum BGND	QCD	Z→tt	Z→ μμ/ee	W	Di-Boson	tt(bar)
e+τ _h	484	427.3 ± 55.3	199.5 ±26.0	202.7 ±26.3	102±1.4	14.0 ± 1.9	0.54 ± 0.09	0.35 ± 0.05
μ + $\tau_{\rm h}$	575	576.3 ± 61.5	622 ±6.6	491.7 ± 52.6	4.6 ± 1.1	13.5±1.6	3.05 ±0.33	1.22 ± 0.14
θ+μ	42	43.5 ± 5.3	2.1 ± 0.4	39.1 ± 5.0	0.63 ± 0.12	0.30 ± 0.20	0.99 ±0.14	0.06 ± 0.02

Major Systematics

- Luminosity 6.5%
- JES ~3-3.7%
- Muon ID ~3%
- τ ID ~3.6%
- τ tracking ~2.7%

$\Phi^0 X \rightarrow \tau^+ \tau^- X$ Limit

- Number of observed events are consistent with background-only hypothesis; no excess yet
- Cross section limits at 95%
 CL are estimated using the M_{vis} distribution for subdivided samples depending on "S/√B" e.g.,
 - Three types of τ identification
 - $M_W < 6 \text{ GeV}, 6 < M_W < 20 \text{ GeV}$

$$\mathbf{M}_{W}^{l} = \sqrt{2 \bullet E^{l} \bullet E^{\nu} \bullet (1 - \cos \Delta \phi)}$$

$$E^{\nu} = \mathbb{E}_{T} \times \frac{E^{l}}{p_{T}^{l}}; \Delta \phi = \angle (p_{T}^{l}, \mathbb{E}_{T})$$

Submitted to PRL: hep-ex/0605009

Combined Limit

Combination of two analyses viz., Φ^0 b(b) \rightarrow bbb(b) [260 pb⁻¹]

& $\Phi^0 X \rightarrow \tau^+ \tau^- X$ [325 pb⁻¹] in four different scenarios viz.,

 $(m_h^{max}, \mu < 0), (m_h^{max}, \mu > 0)$ and $(no-mixing, \mu < 0), (no-mixing, \mu < 0)$

Future Prospects

- Neural Network b-tagging
 - Combination of 3 different tagging methodologies instead of SVT
 - Increase of 33% in efficiency for a fixed fake rate of 0.5 %
- Run IIb Upgrade
 - Additional SMT layer (Layer 0):
 - improvement in b-tagging
 - Improved Jet Triggering algorithmhigher trigger efficiency
- Improved jet algorithm with the usage tracker information (Trackcal jet)
 - More precise energy measurement of the constituent charged particles inside the jet
 - ~10% improvement in jet energy resolution crucial for higgs mass resolution

Summary & Outlook

- DØ has performed the search for MSSM neutral Higgs bosons using 260-325 pb⁻¹ of data recorded during Tevatron Run II
- No excess over the SM background processes is observed yet.
 Upper limits on MSSM higgs production cross section has been derived at 95% CL

- DØ Results on $\Phi^0 X \rightarrow \tau^+\tau^- X$ search has comparable sensitivity with those of CDF
- Combination of Φ^0 b(b) \rightarrow bbb(b) and Φ^0 X $\rightarrow \tau^+\tau^-$ X results has been performed by DØ \rightarrow most sensitive to date.
- Additional search in Φ^0 b(b) $\rightarrow \tau^+\tau^-$ b(b) channel is being pursued by DØ
- DØ updates with 1.2 fb⁻¹ of data are upcoming

