SUSY Higgs Searches at DØ, Tevatron

SUSY’06, University of California, Irvine
June 12-17, 2006

Prolay Kumar Mal
University of Notre Dame
(for DØ Collaboration)
Outline

- MSSM Higgs
- DØ & Tevatron
- DØ search for Neutral MSSM Higgs (Φ^0)
 - $\Phi^0 b(b) \rightarrow b b b(b)$
 - $\Phi^0 X \rightarrow \tau^+ \tau^- X$
- Future Prospects
- Summary & Outlook
MSSM Higgs

- MSSM posits two complex Higgs doublet fields
 - \(H_u (H_d) \) couple to up- (down-) type fermions
 - 5 physical Higgs bosons
 - \(h, H \) (CP-even), \(A \) (CP-odd) and \(H^\pm \)
 - \(h \) predicted to be light: \(m_h < m_H \) and \(m_h \leq 130-140 \) GeV
 - LEP has the limit \(m_h \geq 92 \) GeV

- At tree level, two independent parameters:
 - \(m_A \)
 - \(\tan\beta = <H_u>/<H_d> \) : ratio of vacuum expectation values

- At large \(\tan\beta \), the coupling of \(h/H/A \) (\(\equiv \Phi^0 \)) with ‘down’-type quark, viz., bottom quark enhances over the SM one
 - The production cross-section enhancement by a factor of \(\tan^2\beta \)
MSSM Higgs

At high tan β, A is almost degenerate with h/H

- $\sigma(A) \approx \sigma(h/H)$, $\Gamma(A) \approx \Gamma(h/H)$
- $\text{Br}(A \to bb) \approx \text{Br}(h/H \to bb) \approx 90\%$
 - Another 10% is $\text{Br}(A/h/H \to \tau^+\tau^-)$
- To search for $h/H/A (\equiv \Phi^0)$, $\Phi^0 b(b) \to bbb(b)$ and $\Phi^0 X \to \tau^+\tau^-X$ are the best channels

\[
\sigma(b\bar{b}A) \times BR(A \to b\bar{b}) \approx \sigma(b\bar{b}A)_{SM} \times \frac{\tan^2 \beta}{(1 + \Delta_b)^2} \times \frac{9}{(1 + \Delta_b)^2 + 9}
\]

\[
\sigma(b\bar{b}, gg \to A) \times BR(A \to \tau^+\tau^-) \approx \sigma(b\bar{b}, gg \to A)_{SM} \times \frac{\tan^2 \beta}{(1 + \Delta_b)^2 + 9}
\]

Radiative correction term, dependent on various parameters. 2 benchmark scenarios ("m_h-max" & "no-mixing") are studied.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>m_h-max</th>
<th>no-mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{SUSY}</td>
<td>1 TeV</td>
<td>2 TeV</td>
</tr>
<tr>
<td>X_t</td>
<td>2 TeV</td>
<td>0</td>
</tr>
<tr>
<td>M_2</td>
<td>200 GeV</td>
<td>200 GeV</td>
</tr>
<tr>
<td>μ</td>
<td>± 200 GeV</td>
<td>± 200 GeV</td>
</tr>
<tr>
<td>m_g</td>
<td>800 GeV</td>
<td>1600 GeV</td>
</tr>
</tbody>
</table>

M. Carena et al., hep/ph-0511023
Upgraded DØ Run II detector

- Excellent Tracking system
 - Secondary vertex reconstruction; b-tagging
 - Track triggering and τ identification
- Hermetic calorimeter
 - Jet triggering & reconstruction
 - τ lepton identification
- Extended coverage for muon detector ($|\eta|<2.$)
 - Crucial for μ and τ identification

![Diagram of DØ detector upgrade](image-url)
Tevatron Performance

Run II Integrated Luminosity

\(\Phi^0b(b) \rightarrow bbb(b) \)

\(\Phi^0X \rightarrow \tau^+\tau^-X \)

Luminosity (fb)

1.41

1.18

Delivered

Recorded

19 April 2002 - 23 May 2006
Φ^0_b(b) → bbb(b) Analysis

- **260 pb^-1 of D0 data**
 - Multijet Trigger selection: ≥ 3 jets with \(E_T ≥ 15 \) GeV

- **Event Selection**
 - Optimised \(E_T \) threshold on leading jets for each Higgs mass point
 - Secondary Vertex (SVT) tagging for the b-jet selection: double and triple b-tagged events

- **Backgrounds**
 - QCD fake: jjjj (Data)
 - QCD heavy flavor (HF):
 - bbjj, ccjj, cccc, bbcc, bbbb (Data)
 - Other: Z(bb,cc), tt ... (MC)

- **Event Simulation**
 - SM Higgs ... PYTHIA
 - signal rate and kinematics adjusted to NLO cross section (PRL 94, 031902(2005) Dawson et.al)
 - Background
 - PYTHIA, ALPGEN, MADGRAPH

- **Look for the excess in dijet mass**
Estimation of “mis-tag” rate as a function of p_T and η from full multijet data i.e., events with ≥ 0 b-tagged jets
- The “mis-tag” rate is corrected for heavy flavour component

Normalisation of HF MC from double b-tagged data

$(\text{double b-tagged data}) \times (\text{mis-tag rate}) = (\text{triple b-tagged backgrounds})$

Fitting dijet mass (from leading E_T jets) distribution outside the signal region ($\pm 1\sigma$ around the peak) in the triple b-tagged events
No excess over background events observed

Limits on production cross section & tan\(\beta\) vs. \(m_A\) plane are set for two benchmark scenarios – “no mixing” & “maximal mixing”

- At 95% CL, limit on tan\(\beta\) is down to 50, depending on \(m_A\) and MSSM scenario
 \[\text{PRL 95, 151801 (2005)}\]

For \(m_A=120\) GeV: \(\sigma < 31\) pb\(^{-1}\) @ 95% CL, \(\tan\beta < 55\) @ 95% CL (Max Mixing)
$\Phi^0 X \rightarrow \tau^+ \tau^- X$ Analysis

- Large production cross-section
- Jets from hadronic τ-decays are distinct from the QCD ones

Event signature – $\tau^+ \tau^-$
- Hadronic decay of one of the τ’s while the other one decays into electron or muon (electron/muon, τ-jet and missing transverse energy)
- Both τ’s decay into leptons (electron, muon and missing transverse energy)

Backgrounds:
- Z^0-production: largest irreducible background
- $Z^0/\gamma^* \rightarrow ee/\mu\mu$, multi-jet, $W \rightarrow l\nu+jet$ (rejected with $M_W < 20$ GeV), Di-boson (WW, WZ, ZZ), top pair production

- 325 pb$^{-1}$ of data, recorded by single electron/muon Trigger
- Final discrimination variable between signal and background through the reconstruction of visible mass,
 $$M_{vis} = \sqrt{(p_{\tau_1,vis} + p_{\tau_2,vis} + p_E)^2}$$

Simulation
- Pythia 6.2 (background), FeynHiggs 2.3 (Signal cross section)
Identification of τ lepton

- τ-jet are quite narrow and have less number of tracks/neutral pions, in comparison with QCD jets. Three types of τ's are considered:
 - (Type 1) HAD
 - EM
 - (2) Track
 - π^0
 - (3) QCD-Jet

- Application of Neural Network for τ identification (Identical to $Z \rightarrow \tau^+\tau^-$ cross section measurement; [PRD 71, 072004 (2005)]) - Usage of profile, isolation, etc.
$$\Phi^0 X \rightarrow \tau^+ \tau^- X$$ Results

- Combination of three channels: $e^+\tau_h$, $\mu^+\tau_h$, $e^+\mu$
- Comparison between Signal, background and data after final event selection $[\sigma_{total} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}]$

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Sum BGN</th>
<th>QCD</th>
<th>$Z \rightarrow \tau\tau$</th>
<th>$Z \rightarrow \mu\mu/ee$</th>
<th>W</th>
<th>Di-Boson</th>
<th>tt(bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+\tau_h$</td>
<td>484</td>
<td>427.3 ± 55.3</td>
<td>199.5 ± 26.0</td>
<td>202.7 ± 26.3</td>
<td>10.2 ± 1.4</td>
<td>14.0 ± 1.9</td>
<td>0.54 ± 0.09</td>
<td>0.35 ± 0.05</td>
</tr>
<tr>
<td>$\mu^+\tau_h$</td>
<td>575</td>
<td>576.3 ± 61.5</td>
<td>62.2 ± 6.6</td>
<td>491.7 ± 52.6</td>
<td>4.6 ± 1.1</td>
<td>13.5 ± 1.6</td>
<td>3.05 ± 0.33</td>
<td>1.22 ± 0.14</td>
</tr>
<tr>
<td>$e^+\mu$</td>
<td>42</td>
<td>43.5 ± 5.3</td>
<td>2.1 ± 0.4</td>
<td>39.1 ± 5.0</td>
<td>0.63 ± 0.12</td>
<td>0.30 ± 0.20</td>
<td>0.99 ± 0.14</td>
<td>0.06 ± 0.02</td>
</tr>
</tbody>
</table>

Major Systematics
- Luminosity 6.5%
- JES ~3-3.7%
- Muon ID ~3%
- τ ID ~3.6%
- τ tracking ~2.7%
• Number of observed events are consistent with background-only hypothesis; no excess yet

• Cross section limits at 95% CL are estimated using the \(M_{\text{vis}} \) distribution for subdivided samples depending on “S/\sqrt{B}” e.g.,
 • Three types of \(\tau \) identification
 • \(M_W < 6 \text{ GeV}, 6 < M_W < 20 \text{ GeV} \)

\[
M_W^l = \sqrt{2 \cdot E^l \cdot E^\nu \cdot (1 - \cos \Delta \phi)}
\]

\[
E^\nu = E_T \times \frac{E^l}{p_T}; \Delta \phi = \angle(p_T^l, E_T)
\]

Submit to PRL: hep-ex/0605009
Combined Limit

Combination of two analyses viz., $\Phi^0 b(b) \rightarrow bbb(b)$ [260 pb$^{-1}$] & $\Phi^0 X \rightarrow \tau^+ \tau^- X$ [325 pb$^{-1}$] in four different scenarios viz., $(m_h^{\max}, \mu<0)$, $(m_h^{\max}, \mu>0)$ and (no-mixing, $\mu<0$), (no-mixing, $\mu<0$)
Future Prospects

- **Neural Network b-tagging**
 - Combination of 3 different tagging methodologies instead of SVT
 - Increase of 33% in efficiency for a fixed fake rate of 0.5%

- **Run IIb Upgrade**
 - Additional SMT layer (Layer 0): improvement in b-tagging
 - Improved Jet Triggering algorithm: higher trigger efficiency

- **Improved jet algorithm with the usage tracker information (Trackcal jet)**
 - More precise energy measurement of the constituent charged particles inside the jet
 - ~10% improvement in jet energy resolution crucial for higgs mass resolution
Summary & Outlook

- DØ has performed the search for MSSM neutral Higgs bosons using 260-325 pb⁻¹ of data recorded during Tevatron Run II
- No excess over the SM background processes is observed yet. Upper limits on MSSM higgs production cross section has been derived at 95% CL

- DØ Results on $\Phi^0X \rightarrow \tau^+\tau^-X$ search has comparable sensitivity with those of CDF
- Combination of $\Phi^0b(b) \rightarrow bbb(b)$ and $\Phi^0X \rightarrow \tau^+\tau^-X$ results has been performed by DØ → most sensitive to date.
- Additional search in $\Phi^0b(b) \rightarrow \tau^+\tau^-b(b)$ channel is being pursued by DØ
- DØ updates with 1.2 fb⁻¹ of data are upcoming
MSSM Higgs Search has very bright prospect during Tevatron Run II. It’s just the beginning. Stay tuned!