MSSM Higgs searches with CMS and corresponding SM candle studies

Gianni Masetti
Università di Bologna - INFN

On behalf of the CMS Collaboration
The CMS experiment

- General purpose detector designed to optimize the discovery potential of LHC.
- Good muon system.
- A 4 Tesla magnetic field allows a good resolution in the measure of energetic muons.
- Angular coverage:
 - Tracker: $|\eta| < 2.5$
 - Calorimeters: $|\eta| < 5.3$
 - Muons: $|\eta| < 2.4$
The CMS experiment

Gianni Masetti
Università di Bologna - INFN

12 June 2006
Introduction

- Higgs boson discovery is one of the main goals of the CMS detector.

- In the MSSM there are 5 Higgs bosons:
 - 3 neutral (H and h with CP even; A with CP odd).
 - 2 charged (H±).

- At the tree level, the Higgs sector is defined by $\tan\beta$ and M_A.
 - The other MSSM parameters are important for the calculation of the radiative corrections.

- For the analysis described here the $M_{h_{\text{max}}}$ benchmark scenario is taken:
 - $M_{\text{SUSY}} = 1$ TeV; $\mu = 200$ GeV; $M_2 = 200$ GeV; $X_t = \sqrt{6} M_{\text{SUSY}}$
Production

- Production of neutral MSSM Higgs at LHC:
 - Gluon fusion: \(pp \rightarrow gg \rightarrow h,H,A \)
 - Vector-boson fusion: \(pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + h/H \)
 - Higgs-strahlung: \(pp \rightarrow qq \rightarrow Z^*/W^* \rightarrow h/H + Z/W \)
 - Associated production with b quarks: \(pp \rightarrow qq/gg \rightarrow h/H/A + bb \)

- Production of charged MSSM Higgs at LHC:
 - Associated production with heavy quarks: \(pp \rightarrow qq/gg \rightarrow H^\pm + tb \)
 - Drell-Yan type process: \(pp \rightarrow qq \rightarrow H^+H^- \)
 - gg initial state: \(pp \rightarrow gg \rightarrow H^+H^- \)
 - Associated production with W bosons: \(pp \rightarrow gg \rightarrow HW \)
Search for neutral Higgs Bosons

- $\tan\beta > 15$:
 - $H/A \rightarrow \mu\mu$
 - $H/A \rightarrow \tau\tau \rightarrow e + \text{jet} + X$
 - $H/A \rightarrow \tau\tau \rightarrow \mu + \text{jet} + X$
 - $H/A \rightarrow \tau\tau \rightarrow \text{jet} + \text{jet} + X$
 - $H/A \rightarrow \tau\tau \rightarrow e + \mu + X$
 - $H/A \rightarrow bb$

- $\tan\beta < 15$:
 - $A \rightarrow Zh \rightarrow ll bb$
 - $H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow 4l + \text{Miss } E_T$
Search for charged Higgs Bosons

- $M_H < M_{\text{top}}$:
 - $H^\pm \rightarrow \tau \nu$

- $M_H > M_{\text{top}}$:
 - $H^\pm \rightarrow \tau \nu$
 - $H^\pm \rightarrow t b$
Neutral Higgs: $bb\Phi \rightarrow b\bar{b}\mu\bar{\mu}$

- The Branching ratio in two muons is very small ($3\cdot10^{-4}$), but the final state is very clean.
- The Higgs masses and widths can be reconstructed very precisely:
 $\Delta M_A \approx 0.5 \text{ GeV}/c^2$
 $\Delta \Gamma_A \approx 1.5 \text{ GeV}/c^2$
- Main background from $Z/\gamma^* \rightarrow \mu^+\mu^-$, tt pairs, $Z/\gamma^*bb \rightarrow \mu^+\mu^-bb$.
- The number of background and signal events are entirely determined by data (no need of Monte Carlo to calculate the significance).
Neutral Higgs: $bb\Phi \rightarrow bb\mu\mu$

- To calculate the significance a binned likelihood fit method is applied in the signal+background hypothesis (L_{S+B}) and in the only background hypothesis (L_B).

- Discovery contour plot for 30 fb$^{-1}$:
 - For M_A near 100 GeV/c2 we are too close to the Z peak.
 - For M_A near 130 GeV/c2 the three Higgs bosons contribute and the peak is smeared.

- From theory we have that $\Gamma_A \propto \tan^2\beta$:
 - It is possible to exploit the good precision in the Higgs boson width determination ($\Delta \Gamma_A \approx 1.5$ GeV/c2) to measure $\tan\beta$.
Neutral Higgs: \(bb\Phi \rightarrow bb\tau\tau \)

- The BR(\(\Phi \rightarrow \tau\tau \)) is about 10%.
- The Higgs mass is reconstructed with the neutrinos-charged lepton collinear approximation method.
- Main background comes from \(Z/\gamma^* \rightarrow \tau^+\tau^- \), tt pairs and \(Z/\gamma^*bb \rightarrow \tau^+\tau^-bb \).
- Four analysis have been developed depending by the \(\tau \) decay.

Final state e + jet:
- Main selection cuts based on the identification of an isolated electron and \(\tau \)-jet, and on the b-tag.
Neutral Higgs: $bb\Phi \rightarrow bb\tau\tau$

- **Final state $\mu + jet$:**
 - Main selection cuts based on the identification of an isolated muon and τ-jet, and on the b-tag.

- **Final state two jet:**
 - With respect to the previous analysis, the huge QCD multi-jet background is dominant.

- **Final state $e + \mu$:**
 - Compared with hadronic final state the BR for this channel is small (6.3%), but clean signal.

Gianni Masetti
Università di Bologna - INFN

Irvine – SUSY06
12 June 2006
Zbb as a benchmark for Hbb

- Can we trust about Monte Carlo?
- Zbb events have almost the same production mechanism of MSSM Hbb:
 - Zbb measured from data can be used to verify the theoretical prediction for the cross section, and Z boson and b quark transverse momentum distribution.
 - $Z \rightarrow \tau\tau$ can be used to verify $H \rightarrow \tau\tau$ mass reconstruction with the collinear approximation method.
- A study on $Z \rightarrow \tau\tau \rightarrow \mu +$ hadrons has been performed to measure τ tag efficiency from data.
Neutral Higgs: $bb\Phi \rightarrow bbbb$

- The QCD multi-jet background is huge:
 - The channel is studied with the CMS fast simulation (the signal is also studied with the full simulation to validate the fast simulation).
- This channel can be considered as a cross-check for the discovery (it is required the knowledge of the Higgs boson mass).
- The selection is based on the request of at least four high energetic jets, with at least three of these tagged as b-jet.
- Result are strongly dependent by the knowledge of the background from data.
Neutral Higgs: $A \rightarrow Zh$

- In this study $Z \rightarrow \ell^+\ell^-$ and $h \rightarrow bb$.
- Low $\tan\beta$ and $m_Z + m_h \leq m_A \leq 2m_{top}$.
- Strongly dependent by the MSSM parameters μ and M_2 (the decay $A \rightarrow \chi\chi$ can become dominant). Better results are obtained for large values of μ and M_2.
- The main background comes from tt pairs and Zbb.
- The main selection cuts require two opposite sign high p_T isolated leptons and two high E_T tagged b-jets.

Gianni Masetti
Università di Bologna - INFN
Neutral Higgs: $\Phi \rightarrow \chi\chi \rightarrow 4\ell + E_T^{\text{miss}}$

- The study is performed in three mSUGRA benchmark points in the low and intermediate region of $\tan\beta$.
- Very clean final state.
- SM background comes from ZZ, Zbb and tt. SUSY background comes from decay of squarks and gluinos in charginos and neutralinos, and from production of slepton and gaugino pairs.
- The study is done with the CMS fast simulation.
Charged Higgs: $H^\pm \rightarrow \tau^\pm \nu_\tau$ ($m_H < m_t$)

- The channel is $t\bar{t} \rightarrow H^\pm Wb\bar{b}$.
- The $BR(H^\pm \rightarrow \tau^\pm \nu_\tau)$ is 98%.
- The leptonic decay of the W is chosen, while the τ decay to hadrons.
- The main background comes from $t\bar{t}$, $W^\pm + 3$ jets and Wt events.

Gianni Masetti
Università di Bologna - INFN
Charged Higgs: $H^\pm \rightarrow \tau^\pm \nu_\tau \ (m_H > m_t)$

- Produced with $gg \rightarrow tbH^\pm$.
- The final state is quite clean and almost background free.
- The tau helicity correlations favouring the $H^\pm \rightarrow \tau^\pm \nu_\tau$ decay over the $W^\pm \rightarrow \tau^\pm \nu_\tau$ decay.
- The main background comes from tt, Wt, $W+3$jets and QCD multi-jet events.
- After the selection cuts the transverse mass $(\tau$-jet; $E_T^{miss})$ is reconstructed:

$$m_T = \sqrt{2 \times E_T^{jet} \times E_T^{miss} \times (1 - \Delta \phi(\tau jet, E_T^{miss}))}$$

Gianni Masetti
Università di Bologna - INFN
Charged Higgs: $H^\pm \rightarrow tb$ ($m_H > m_t$)

- For $m_H > m_t$ the BR($H^\pm \rightarrow tb$) becomes dominant.
- Two channels:
 - $gb \rightarrow tH^\pm \rightarrow ttb \rightarrow W^+W^- bbb \rightarrow qq'\mu\nu\mu bbb$ (Fast simulation)
 - $gg \rightarrow tH^+b \rightarrow ttbb \rightarrow W^+W^- bbbb \rightarrow qq'\mu\nu\mu bbbb$ (Full simulation)
- Presence of an isolated muon and high branching fraction (~30%).
- Main background comes from $tt +$ jets production.
- Large background remains after all selection cuts:
 - The effect of systematic uncertainty on the knowledge of the background is important
- No visibility for this channel during the low luminosity phase at LHC.

![Graphs showing $\tan \beta$ vs. m_A for $gb \rightarrow tH^\pm$ and $gg \rightarrow tH^+b$.](image)
Summary of discovery contour plot

CMS, 30 fb$^{-1}$

pp → tbH$^\pm$, H$^\pm$ → τν,ν

m$_t$ = 175 GeV/c2

CMS, 30 fb$^{-1}$

pp → bbϕ, ϕ = h,H,A

m$_h^{\text{max}}$ scenario

M$_{\text{SUSY}}$ = 1 TeV/c2

M$_2$ = 200 GeV/c2

μ = 200 GeV/c2

m$_{\text{gluino}}$ = 800 GeV/c2

Stop mix: $X_t = 2 M_{\text{SUSY}}$

Gianni Masetti
Università di Bologna - INFN

Irvine – SUSY06
12 June 2006
Summary of discovery contour plot

- Discovery plot for MSSM h Higgs bosons from rescaling of SM Higgs boson study in the channels $h \rightarrow \gamma\gamma$ and qqh.

![Summary of discovery contour plot](image)
Conclusions

Many channels have been studied to estimate the discovery potential of MSSM Higgs bosons at CMS.

Neutral Higgs bosons:
- $H \rightarrow \tau\tau$: 4 analysis studied. Good discovery region in the M_A-tanβ plane.
- $H \rightarrow \mu\mu$: it is possible to measure MSSM parameters.
- $H \rightarrow bb$: cross-check for the Higgs discovery.
- $A \rightarrow Zh$: low tanβ study.
- $H \rightarrow \chi\chi$: mSUGRA study.

Charged Higgs bosons:
- $H^\pm \rightarrow \tau^\pm\nu_\tau$: two different studies depending on m_{H^\pm}. Good discovery region in the M_A-tanβ plane.
- $H^\pm \rightarrow tb$: no visibility for this channel during the low luminosity fase at LHC.

Studies have been performed on SM processes to better understand MSSM processes.
Backup slides
$\Phi \rightarrow \tau \tau \rightarrow e + \text{jet}: \text{systematics}$

- 3% error on jet energy scale.
- 10% error on MET scale.
- 5% b-tag efficiency (from tt events).
- 2% electron identification.
- 5.6% of theoretical uncertainty of tt background.
- 1% of theoretical uncertainty of Z/γ^* background.
- 14.2% of theoretical uncertainty of Z/γ^*bb background.
- 3% luminosity uncertainty.
LEP limits
Tevatron limits

- MSSM H-\rightarrowττ Search.
- CDF Run II 310 fb$^{-1}$, preliminary

Gianni Masetti
Università di Bologna - INFN

Irvine – SUSY06
12 June 2006