Leptonic B Decays at Belle and Babar

A. Ishikawa for the Belle Collaboration (KEK)

Introduction

- Leptonic B decays are sensitive probes for new physics
 - Small uncertainty due to QCD compared with hadronic decays
 - P→ff decays are helicity suppressed in the SM
 - Sensitive to helicity allowed coupling
 - charged Higgs propagation
 - Higgs mediated FCNC
 - Modes involving τ have larger branching fractions but need to tag the other B meson because of multi neutrinos in the final states.
- In this talk, following decay modes are covered
 - B⁰ \rightarrow e⁺e⁻, B⁰ \rightarrow μ ⁺ μ ⁻ : no neutrinos
 - $B^0 \rightarrow \tau^+\tau^-$, $B^+ \rightarrow \tau^+\nu$: at least two neutrinos in the final states

$B^0 \rightarrow l^+l^- decays$

- Neutral B mesons decay to l+l- via box or penguin annihilation diagrams.
- The branching fractions are suppressed by lepton mass

$$\mathcal{B}(B \to \ell^+ \ell^-) = \tau_B \frac{G_F^2}{\pi} \eta_Y^2 (\frac{\alpha}{4\pi \sin^2 \theta_W})^2 F_B^2 m_\ell^2 m_B |V_{tb}^* V_{td}|^2 Y^2 (x_t)$$

$$\mathcal{B}(B^0 \to e^+ e^-)_{\text{SM}} \sim 10^{-15}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-)_{\text{SM}} \sim 10^{-10}$$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\text{SM}} \sim 10^{-8}$$

- New physics(2HDM, Z-FCNC, Higgs FCNC) enhances the BFs by two orders of magnitude.
- None of the decay modes are observed yet.

Penguin Annihilation

$B^+ \rightarrow \tau^+ \nu$ decays

- □ Charged B mesons decay to l⁺v via an annihilation diagram in the SM
- The Branching fractions are suppressed by lepton mass

$$\mathcal{B}(B^+ \to \ell^+ \nu) = \frac{G_F^2 m_B}{8\pi} n_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$
$$\mathcal{B}(B^+ \to \tau^+ \nu)_{\text{SM}} = (1.59 \pm 0.40) \times 10^{-4}$$

- □ The best upper limit was given by Babar $< 2.6 \times 10^{-4}$
- Charged Higgs contribution changes the branching fraction

$$\mathcal{B}(B\to\tau\nu)_{\rm 2HDM} = \mathcal{B}(B\to\tau\nu)_{\rm SM}\times r_H$$

$$r_H = (1-\frac{m_B^2}{m_H^2}\tan^2\beta)^2$$

$$\mathbf{B}^+$$

 $B^0 \rightarrow e^+e^-$ and $B^0 \rightarrow \mu^+\mu^-$

Modes with no neutrinos

B meson reconstruction for $B^0 \rightarrow e^+e^-$, $\mu^+\mu^-$

- Two variables are used to identify the B mesons
 - Beam Energy constraint mass

$$M_{bc} = \sqrt{E_{\mathsf{beam}}^2 - p_B^2}$$

Energy difference

$$\Delta E = E_B - E_{\text{beam}}$$

- **Background suppression**
 - Event shape
 - Multiplicity
 - Energy sum of the remaining particles

$B^0 \rightarrow e^+e^-, \mu^+\mu^-$ by Babar

 \blacksquare B⁰ \rightarrow e⁺e⁻

$$\mathcal{B}(B^0 \to e^+e^-) < 6.1 \times 10^{-8}$$
 (Babar, 111/fb)

- The upper limit is $O(10^7)$ above the prediction within the SM: ~ 10^{-15} .
- Impossible to observe even at super B-factory

□
$$B^0 \to \mu^+ \mu^ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 8.3 \times 10^{-8}$$
(Babar, 111/fb)

- 800 times larger than the prediction in the SM.
- CDF gives better limit with 364/pb

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.9 \times 10^{-8}$$

- Statistics limited at both lepton and hadron colliders
- Future hadron collider experiments may find the signal.

 $B^0 \rightarrow \tau^+\tau^-$ and $B^+ \rightarrow \tau^+\nu$

Modes with at least two neutrinos

$B^0 \rightarrow \tau^+\tau^-$ and $B^+ \rightarrow \tau^+\nu$

- In the decay chains for B→ ττ and B→ τν, there are at lease two neutrinos.
- □ Usual kinematic variables (M_{bc} and ΔE) to identify B mesons cannot be used for these analyses.

 Reconstruct the decay of the non-signal B (tagging side), then look for the signal decay in whatever is left over

Tagging side

Reconstruct hadronic modes

Signal side:

Reconstruct particles from τ decay

Identification of multi neutrino modes

- Extra neutral energy in calorimeter : E_{ECL}(Belle), E_{ECL}(Babar)
 - Total calorimeter energy from the neutral clusters which are not associated with the tagged B and signal B

$$E_{ECL} = E_{tot} - E_{tag} - E_{sig}$$

Most powerful variable for separating signal and background

$B^0 \rightarrow \tau^+\tau^-$ by Babar

- 210/fb data is used.
- The other B meson is tagged with hadronic decays.

$$B \to D^{(*)}X$$

$$D^{*+} \to D^{0}\pi^{+}$$

$$D^{0} \to K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K\pi^{+}\pi^{-}\pi^{+} \text{ and } K_{S}^{0}\pi^{+}\pi^{-}$$

$$D^{+} \to K_{S}^{0}\pi^{+}, K^{-}\pi^{+}\pi^{+}, K_{S}^{0}\pi^{+}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{+}\pi^{-} \text{ and } K^{+}K^{-}\pi^{+}$$

$$X = i\pi^{\pm} + j\pi^{0} + kK^{\pm} + lK_{S}^{0} (i + j + k + l \le 5)$$

Cleaner 147 decay channels are selected as tagging modes.

$$(2.80 \pm 0.27) \times 10^5$$
, $B^0 \overline{B}{}^0$ events

Signal region: $0.09 \times AE \times 0.06 \text{ GeV} = 5.27 \times M_{\odot} \times 5.29 \text{ GeV}/c^2$

τ decay modes for $B^0 \rightarrow \tau^+\tau^-$ by BaBar

- Four τ decay modes are used.
 - These cover about 71% of total decay width of τ.
 - All combinations of τ^+ and τ^- decays are used except for evv/ρv, μvv/ρv and π v/ρv combinations.
 - About 30% of B⁺ $\rightarrow \tau^+\tau^-$ is covered with these combinations.

$$\tau^{+} \to e^{+}\nu\nu \qquad \qquad \tau^{-} \to e^{-}\nu\nu
\tau^{+} \to \mu^{+}\nu\nu \qquad \qquad \qquad \tau^{-} \to \mu^{-}\nu\nu
\tau^{+} \to \pi^{+}\nu \qquad \qquad \tau^{-} \to \pi^{-}\nu
\tau^{+} \to \rho^{+}\nu \qquad \qquad \tau^{-} \to \rho^{-}\nu$$

- Further selections are applied to reduce backgrounds
 - Momentum balance of τ^+ and τ^- daughters
 - Neural net

Result for B⁰ $\rightarrow \tau^+\tau^-$ by BaBar

Require the E_{res} is consistent with zero.

Expected events: 281 ± 48

Observed events: 263 ± 19

Efficiency: $4.3 \pm 0.9 \%$

Observed number of events is consistent with expected.

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

- The limit is O(10⁴) larger than predictions in the SM
- □ J.Kalinowski pointed out at EPS2005 that the limit on BF(B \rightarrow μμ) gives better sensitivity in the SM.

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < UL(B^0 \to \mu^+ \mu^-)_{CDF} \times \frac{m_{\tau}^2}{m_{\mu}^2}$$
 $< \sim 1.0 \times 10^{-5}$

$B^+ \rightarrow \tau^+ \nu$ by Belle

- 414/fb data.
- About 180 decay channels are used for tagging.

$$B^{+} \to \overline{D}^{(*)0} + \pi^{+} / \rho^{+} / a_{1}^{+} / D_{S}^{(*)+} \qquad \overline{D}^{0} \to 7 \text{ modes}$$

$$B^{0} \to D^{(*)-} + \pi^{+} / \rho^{+} / a_{1}^{+} / D_{S}^{(*)+} \qquad D^{-} \to 6 \text{ modes}$$

$$D^{0} = \overline{D}^{0} \pi^{-} / D^{-} \pi^{0} \qquad D_{S}^{+} \gamma \qquad D_{S}^{+} \to 2 \text{ modes}$$

Signal region : $-0.08 < \Delta E < 0.06$ GeV, $M_{bc} > 5.27$ GeV/ c^2

- \Box τ lepton is identified in 5 decay modes
 - 81% of total width is covered

$$\tau^- \to e^- \nu \bar{\nu}, \ \mu^- \nu \bar{\nu}, \ \pi^- \nu, \ \pi^- \pi^0 \nu, \ \pi^- \pi^+ \pi^- \nu$$

- Background suppressions
 - Missing momentum
 - Momentum of hadronic system

m ~ 5.28 GeV/c² σ ~ 3 MeV/c² due to σ (E_{beam})

Fit Result for B⁺ $\rightarrow \tau^+ \nu$

Unbinned Likelihood fit to the obtained E_{FCI} distributions

Observe 21.2 +6.7 events with a significance of 4.2σ

	$N_{\sf obs}$	N_{S}	N_{b}	Σ
$\mu^-ar{ u}_\mu u_ au$	13	$5.4^{+3.2}_{-2.2}$	$9.1^{+0.2}_{-0.1}$	2.3σ
$e^-ar{ u}_e u_ au$	12	$3.9^{+3.5}_{-2.5}$	$9.2^{+0.2}_{-0.2}$	1.5σ
$\pi^- u_{ au}$	9	$3.4^{+2.6}_{-1.6}$	$4.0^{+0.2}_{-0.1}$	1.9σ
$\pi^-\pi^0 u_ au$	11	$6.2^{+3.9}_{-2.7}$	$4.2^{+0.3}_{-0.3}$	2.6σ
$\pi^-\pi^+\pi^- u_ au$	9	$3.1^{+3.1}_{-2.6}$	$3.7^{+0.3}_{-0.2}$	1.2σ
Combined	54	$21.2^{+6.7}_{-5.7}$	$30.2^{+0.5}_{-0.4}$	4.2σ

 Σ : Significance with systematics

Signal shape: Gauss + exponential

Background shape: second-order polynomial

Background yield is consistent with the expectation from the MC simulation

First Evidence for a leptonic B decay!!

Branching Fraction for B⁺ $\rightarrow \tau^+\nu$

All τ decay modes combined

$$\mathcal{B}(B \to \tau \nu) = (1.06^{+0.34}_{-0.28}^{+0.18}) \times 10^{-4}$$
 Ex

(Preliminary)

SM : B(B
$$\rightarrow \tau \nu$$
)=(1.59 \pm 0.40) \times 10⁻⁴

Result is consistent with SM expectation with $f_B = 0.216 \pm 0.022$ GeV and $V_{ub} = (4.39 \pm 0.33) \times 10^{-3}$.

Extracted branching fraction for each τ decay mode

Constraint on 2HDM Parameter space

Constraint on Charged Higgs

$$\mathcal{B}(B \to \tau \nu)_{\text{2HDM}} = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$$

$$\mathcal{B}(B \to \tau \nu) = (1.06^{+0.34}_{-0.28}(\text{stat})^{+0.18}_{-0.16}(\text{syst})) \times 10^{-4}$$

$$\text{SM} : \mathcal{B}(B \to \tau \nu) = (1.59 \pm 0.40) \times 10^{-4}$$

$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2 \longrightarrow r_H = 0.67^{+0.29}_{-0.26}$$

95.5%C.L. exclusion boundaries

Summary

- Leptonic B decays are sensitive probes for new physics
- □ We searched for B⁰ → e⁺e⁻, B⁰ → μ ⁺ μ ⁻ and B⁰ → τ ⁺ τ ⁻ and found no signals.
- Belle finds Evidence for B⁺ $\rightarrow \tau^{+}\nu$!!
- This gives a strong constraint on 2HDM parameter space.