A Solution for Little Hierarchy Problem and $b \rightarrow s \gamma$

Nobuhiro Maekawa (Nagoya Univ.)

with S. Kim, A. Matsuzaki, K. Sakurai, A.I. Sanda, T. Yoshikawa

1. Little hierarchy problem
2. Higgs search at LEP
3. Previous works
4. Our calculation
5. $b \rightarrow s \gamma$ constraint
6. Summary
Little Hierarchy Problem

- SM Higgs ≥ 114.4 GeV \quad \text{LEP}
- If lighter MSSM Higgs ≥ 114.4 GeV
 \quad \rightarrow \quad \text{Large stop mass } \geq 500$ GeV
 \quad \rightarrow \quad \text{Requires a tuning to obtain EW scale}

Little Hierarchy Problem

- But the Higgs bound at LEP is for SM, not for MSSM.
- We must examine the LEP results in MSSM.
Higgs Search at LEP

- The SM Higgs mass $> 114.4 \text{ GeV (95\% CL)}$

\[|D_\mu H|^2 \rightarrow g^2 ZZHH \rightarrow g^2 \langle H \rangle ZZH = g_{ZZH} ZZH \]
LEP experiment for MSSM Higgs

- MSSM has two Higgs doublets. One of two Higgs have vanishing VEV.
- For simplicity, we take $\langle H_u \rangle >> \langle H_d \rangle$
 $$H_u \rightarrow g_{ZZH_u} \sim g_{ZZH} \quad \text{SM like Higgs}$$
 $$H_d \rightarrow g_{ZZH_d} << g_{ZZH} \quad \text{cannot be seen in LEP}$$
- If $m_{H_u} > m_{H_d}$, lighter Higgs becomes H_d
 Lighter Higgs H_d cannot be seen.

Is it possible to realize the above situation in a natural way?
Mass matrix of CP even Higgs (tree)

- When $\langle H_u \rangle >> \langle H_d \rangle$ (i.e. $\tan \beta >> 1$)

$$m_{h,H}^2 = \begin{pmatrix}
H_d & H_u \\
H_u & \end{pmatrix} \begin{pmatrix}
m_A^2 \sin^2 \beta + m_Z^2 \cos^2 \beta & -(m_A^2 + m_Z^2) \sin \beta \cos \beta \\
-(m_A^2 + m_Z^2) \sin \beta \cos \beta & m_Z^2 \sin^2 \beta + m_A^2 \cos^2 \beta
\end{pmatrix} \sim \begin{pmatrix}
m_A^2 & 0 \\
0 & m_Z^2
\end{pmatrix}$$

m_A CP odd Higgs mass

- It is easy to satisfy $m_{Hu} > m_{Hd}$, if we take $m_A^2 < m_Z^2$
 \Rightarrow All the Higgs boson mass scales are EW scale!

- Is it possible to satisfy $m_{Hu} > 114.4 \text{GeV}$ naturally?
 \rightarrow loop corrections and diagonalization of actual mass matrix must be taken into account
Experimental aspect

Results of LEP II

- 115 GeV ~1.7 σ excess may be explained by the heavier (the SM like) CP-even MSSM Higgs boson
- 98 GeV ~2.3 σ excess may be explained by the lighter CP-even MSSM Higgs with small coupling
Previous works

- Both excesses can be explained in the MSSM, if SUSY breaking parameters have not mSUGRA type boundaries.

\[90\text{GeV} \leq m_A \leq 175\text{GeV}, \quad 110\text{GeV} \leq m_{H^\pm} \leq 200\text{GeV} \]

- They didn't take care about the fine-tuning problem enough.

\[100\text{GeV} \leq m_{\tilde{t}}, m_{H_u}, m_{H_d}, \mu, A_t \leq 2\text{TeV} \]

 e.g., large \(\mu \) requires fine-tuning twice, because

\[m_1^2 = m_{H_d}^2 + \mu^2, \quad m_2^2 = m_{H_u}^2 + \mu^2 \approx O((100\text{GeV})^2) \]

- It is not obvious whether it is possible within natural SUSY breaking parameters.

\[m_{\tilde{t}}, m_{H_u}, m_{H_d}, \mu, A_t \approx O((100\text{GeV})) \]
Set up for numerical calculation

- Natural SUSY breaking parameters
 \[m_\tilde{t}, m_{H_u}, m_{H_d}, \mu, A_t \approx O((100\text{GeV})) \]

- GUT relation for gaugino masses

- LEP bound \(m_{\tilde{\chi}^0} \geq 46\text{GeV}, \ m_{\tilde{\chi}^\pm} \geq 94\text{GeV} \)

- Consistent with LEP Higgs search
 \[\xi = g_{ZZh} / g_{ZZH_{\text{SM}}} \leq 0.50 \]
 \[90\text{GeV} \leq m_h (\leq 117\text{GeV}) \]

- Signal(98GeV)
 \[\xi = g_{ZZh} / g_{ZZH_{\text{SM}}} \leq 0.50 \]
 \[95\text{GeV} \leq m_h \leq 101\text{GeV} \]
Results of numerical analyses

$90 \leq \xi \leq 5.00 \, \text{GeV}$

$5.00 \, \text{GeV} \leq \xi \leq 101 \, \text{GeV}$

$\tan \beta$

$m_{Q_3}=350\,\text{GeV}, \, m_{U_3}=300\,\text{GeV}, \, \mu =200\,\text{GeV}, \, A=325\,\text{GeV}$

HH : heavy Higgs, CH : Charged Higgs

1. $0 \leq \xi \leq 0.5$
2. $90\,\text{GeV} \leq m_h$

$0 \leq \xi \leq 0.50$
$95\,\text{GeV} \leq m_h \leq 101\,\text{GeV}$
1st summary and questions

- Light CP-even Higgs boson with small g_{Zh} coupling can be consistent with the LEP data in the MSSM with natural SUSY breaking parameters. (2 excesses can be signals.)
- Mass scales of the MSSM Higgs bosons are EW scale.

 \[m_h \sim 98\text{GeV}, \quad m_H \sim (115-120)\text{GeV} \]
 \[m_A \sim 100\text{GeV}, \quad m_{H^\pm} \sim 130\text{GeV} \]

- Is such a light charged Higgs boson consistent with $\text{Br}(b\rightarrow s\gamma)$? [next topic]

 cf. $m_{H^\pm} \geq 350\text{GeV}$ in the type II 2HDM

- What is the essential point for obtaining lighter stop?

 $m_t \approx 300\text{GeV}$
Rich guy becomes richer

- The same radiative correction $\Delta(m_{\tilde{t}})$

 ① $m_{H_d}^2 \geq m_{H_u}^2 + \Delta(m_{\tilde{t}})$

 $114 \text{GeV} \leq m_h$

 ② $m_{H_d}^2 \leq m_{H_u}^2 + \Delta(m_{\tilde{t}})$

 $114 \text{GeV} \leq m_H$

- Off diagonal element $m_{12}^2 \propto \cot \beta$ increases
 (decreases) $m_H(m_h)$

- The usual case ① needs larger $\Delta(m_{\tilde{t}})$ and smaller m_{12}^2
 (larger $\tan \beta$) to satisfy the lower bound of SM like Higgs.

Large $\tan \beta$ is unfavored in case ②
Numerical calculation

\[m_Q = 350\text{GeV}, \quad m_U = 300\text{GeV}, \]
\[\mu = 200\text{GeV}, \quad A = 325\text{GeV} \]

\[m_Q = 300\text{GeV}, \quad m_U = 250\text{GeV}, \]
\[\mu = 300\text{GeV}, \quad A = 300\text{GeV} \]

\[0 \leq \xi \leq 0.50 \]
\[90\text{GeV} \leq m_h (\leq 117\text{GeV}) \]
$b \rightarrow s \gamma$ constraint

Is this scenario consistent with $b \rightarrow s \gamma$?

$m_{H^\pm} \approx 130\text{GeV} \iff m_{H^\pm} \geq 350\text{GeV}$
Branching ratio of $b \rightarrow s \gamma$

$$\text{Pre: }(3.60 \pm 0.30) \times 10^{-4}$$
$$\text{Exp: }(3.39 \pm 0.27) \times 10^{-4}$$

Fact: no $b \rightarrow s \gamma$ process if SUSY is exact [Ferrara and Remiddi ’74]

$m_W = m_{\tilde{W}}, m_{H^\pm} = m_{\tilde{H}^\pm}, m_t = m_{\tilde{t}}$

Naturalness \Rightarrow The masses of every fields in the loops are the weak scale.

$m_W \sim m_{\tilde{W}}, m_{H^\pm} \sim m_{\tilde{H}^\pm}, m_t \sim m_{\tilde{t}}$

The cancellation between charged Higgs contribution and the chargino’s is expected.
Results (small coupling, naturalness)

- **Charged Higgs** \((m_{Q3}=350\text{GeV}, m_{U3}=300\text{GeV}, \mu_R=200\text{GeV}, \tan\beta=10)\)

- **Chargino**

SM \(\Rightarrow\) Charged Higgs induced amplitude

\[
\begin{align*}
\text{Charged Higgs induced amplitude} & \quad \text{(Charged Higgs)} \\
\text{SM} & \quad \Rightarrow \\
\text{Chargino induced amplitude} & \quad \text{(Chargino)}
\end{align*}
\]
$B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$

Charged Higgs contribution in tree diagram.

*There are no SUSY particle contributions at tree level.

i.e., no cancellations as in the case of $b \rightarrow s \gamma$!

$$Br(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau})_{SM+CH} = Br(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau})_{SM} \times r_H$$

$$r_H = (1 - m_B^2 \frac{\tan^2 \beta}{2})^2$$

$$m_{H^\pm} = 130 \text{GeV}$$

$*Br(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau})_{SM} = \frac{G_F m_B m_{\tau}^2 (1 - \frac{m_{\tau}^2}{m_B^2})^2 f_B V_{ub}^2}{8\pi} \tau_B$

$$= (1.59 \pm 0.40) \times 10^{-4}$$

$$Br(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau})_{Exp} = (1.06^{+0.34}_{-0.28} \text{(stat)} + 0.18_{-0.16} \text{(syst)}) \times 10^{-4}$$

Belle hep-ex/0604018

$$r_H \approx 0.67, m_{H^\pm} \approx 130 \text{GeV} \Rightarrow \tan \beta \approx 10.35$$
Summary

- Little hierarchy problem can be solved by lighter Higgs with smaller ZZh coupling.
 Rich (poor) guy becomes richer (poorer).
- Every Higgs in MSSM have the weak scale masses.

 \[
 m_h \sim 98\text{GeV}, m_H \sim (115-120)\text{GeV} \\
 m_A \sim 100\text{GeV}, m_{H^\pm} \sim 130\text{GeV}
 \]
- Such small charged Higgs mass is consistent with Br(b\rightarrows γ) because of cancellation.
 Naturalness requirement plays an important role in the cancellation.