New Physics in Top Couplings

SUSY, June ‘06
Puneet Batra & Tim Tait (hep-ph/0606068)
Intro

• The top mass is large

 EWSB is communicated strongly to the top; models that modify the symmetry breaking sector can uniquely alter the top’s couplings to the W & Z.

 Strongly-coupled models, Little Higgs models, and yes, even SUSY models can shift the top quark couplings.

• Direct production of the new physics may be kinematically inaccessible. Maybe 1/100 is natural!

• Model independent, direct measurements, of the top quark couplings are crucial (for verification, discovery, and exclusion).
Shifts in top couplings

4th generation mixing: GIM mechanism, only the W–t–b coupling is affected

Little Higgs theories (Topcolor, too)
- Mixing with a electroweak singlet
 \[\lambda_{t_A}' H Q t^c + \lambda_{t_B}' H Q T^c + m_{T_A}' T t^c + \lambda_{T_B}' T T^c \]
 \[(EW SB) \rightarrow m_t t t^c + m_T T T^c \]

- Littlest Higgs, Simplest Higgs, Minimal Moose, ... T–Parity.
 Could be combined with gauge boson mixing or not.

- T–Parity: No mixing with heavy gauge bosons, but mixing with a singlet Top. Corrections depend on
 \[\lambda_T h^0 T t^c \]
 \[m_T \]
 and are of order \(O \left(\frac{\lambda_T^2 v^2 g}{m_T^2} \right) \)
Shifts in top couplings

\[H, \bar{H} \]

\[SU(2)_1 \sum SU(2)_2 \]

- A possibility for flavor: explains why the third generation is ‘off’ (mass, mixing)

- Useful for addressing the SUSY little hierarchy problem.

- The observed W, Z are linear combinations of SU(2)_1 and SU(2)_2 gauge bosons--\[\rho \] corrections only at order \[\left(\frac{v^2}{f^2} \right)^2 \].

- For small \(\cos(\phi) \), significantly modified couplings for the third generation *only*. Shifts in couplings are from light-heavy mixing due to the Higgs vev: \(\mathcal{O} \left(\left(\sin \phi \right)^4 \frac{v^2}{f^2} \right) \).
Expected Limits on SM-like top couplings

\[\frac{\Delta g_{L}}{g_{L}}(Wtb) \]

\[\frac{\Delta g_{A}}{g_{A}}(Ztt) \]

\[\text{LHC} \]

\[\text{ILC} \]

4th Gen.

T-Parity:

\[m_T = 500 \text{ GeV}, \lambda_T \text{ specified} \]

TopFlavor:

\[\sin \phi = 0.9, \ m_{Z'} \text{ indicated} \]
Single-top is hard at the ILC!

$t\bar{t}$ production dominates (~50 x greater) above threshold and is insensitive to the W-t-b coupling.

The 3 dominant single-top diagrams always have an additional real W and b!

Production x Decay: \[\sigma \propto g_{Vt\bar{t}}^2 \times \left\{ \frac{g_{Wtb}^2}{m_t^2 g_{Wtb}^2} \right\}^2 \]

Difficult to use single-top to measure $g_t \bar{t}_L W b_L$ without getting killed by the $t\bar{t}$ background.
Below Threshold Sensitivity

Simple observation: Below the $t\bar{t}$ threshold, sensitivity is regained:

$$\sigma \propto \frac{g_{Wtb}^2}{\left(q_{t^*}^2 - m_t^2\right)^2 + m_t^2 \Gamma_t^2}$$

the virtual t^* produces a dependence on the W-t-b coupling.

How much does this add to the single-top rate when trying to determine the left-handed W-t-b coupling?
$g_{Wtb} / g_{SM} = 2$

$g_{Wtb} / g_{SM} = 1$

$g_{Wtb} / g_{SM} = 0.5$

Sensitivity vs Energy

σ (fb)

\sqrt{S} (GeV)
Sensitivity vs Energy

Difference/(SM)$^{1/2}$ vs $s^{1/2}$

- $g/g_{SM} = 2$
- $g/g_{SM} = 0.5$

Events

Graph showing sensitivity vs energy with two lines representing different values of g/g_{SM}.
$g_{Wtb}/g_{SM} = 2$
$g_{Wtb}/g_{SM} = 1$
$g_{Wtb}/g_{SM} = 0.5$

Sensitivity vs Energy

σ (fb)

\sqrt{S} (GeV)
Signal estimation

- “Golden Channel” Semileptonic final state, triggering on the lepton and missing E_T

- Assume 100 fb^{-1}. For some scale, the standard top threshold scan is 30 fb^{-1} across 10 pts (one “well” below threshold). Could spread the needed luminosity across a few below–threshold points.

- Require 2 b–tags (each ~ 70 %)

- Require a top mass and W mass reconstruction (without assuming b–charge) from both the leptonic and hadronic decay.

- LO, fully interfering, estimates (MadEvent), statistical errors

- mistag background small; the dominant background is from real WbWb production through intermediate Higgs and/or Z. Could beat down further with invariant mass rejections. Purity of final sample is very high.

- We estimate the event rate by multiplying each WbWb(g, Γ) with the monte–carloed SM efficiency that pass our cuts (~15%). (branching fractions + kinematic cuts)
@ 340 GeV (Semileptonic final state)

Events/2 GeV

\(m_t \)

No Cuts

After Cuts
$\sqrt{S} = 340$ GeV

Γ_t vs. g_{Wtb}/g_{SM}
Conclusions

$\delta g_A/g_A (Z_{tt})$

$\delta g_L/g_L (Wtb)$

4th Gen.

Top Flavor

T-Parity

LHC

ILC

± 0.2

± 0.1

0

$t t^*/$ singletop at the ILC!
Physics models that address the hierarchy problem often predict shifts in the gauge–boson–top couplings. Model–independent, direct measurements of these couplings are needed.

Precise measurements of \(g \bar{t}_L W b_L \) at an e\(^+\) e\(^-\) collider are challenging at the ILC due to low statistics and a large \(t\bar{t} \) background.

\(t t^* \) contributions do depend (unlike \(t t \)) on \(g \bar{t}_L W b_L \) and enhance the ‘single–top’ like signal.

A 3\% measurement is possible in the semi–leptonic channel, can help rule out many models of BSM physics!
Expected Limits on SM-like top couplings

- $t\bar{t}Z$ production
- $t\bar{t}$ production
- Single t production

Abe et al.
Baur, Juste, Orr, Rainwater
Beneke et al.