Twin Higgs
from
Left-Right Symmetry

H. S. Goh
Univ. of Arizona
June 13, 2006
Outline

• Introduction: Little Hierarchy Problem
• Twin Mechanism
• Twin Higgs from Left-Right Symmetry
• Phenomenology
• Summary
Recipe

- SU(4) Global symmetry in Higgs potential
- $H = (H_A, H_B)$ transforms as a fundamental
- Twin symmetry $A \leftrightarrow B$
- $\langle H \rangle = (0, 0, 0, f)$ break $SU(4)$ to $SU(3) \Rightarrow 7$ Goldstone bosons
- Gauge $SU(2)_A \times SU(2)_B \subset SU(4)$
- Promote top Yukawa to preserve Twin symmetry
Left-Right Models

\[SU(2)_A \times SU(2)_B \quad \sim \quad SU(2)_L \times SU(2)_R \]

\[Twin \quad \sim \quad L - R \]

\[SU(2)_L \oplus SU(2)_R \]

\[Q_L \leftrightarrow Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \]

\[Z_2 \]

\[: \quad : \]

\[H_L \quad H_R \]

\[H \]

\[SU(4) \]

[Chacko, HSG, Harnik hep-ph/0512088]
Higgs Sector

- Focus on effective theory below the scale $\Lambda \sim 4\pi f$
- H is Non-linearly realized
- Transforms under SU(4) as a fundamental non-linear representation

\[
\begin{pmatrix}
H_L \\
H_R
\end{pmatrix} = H = fe^{i\pi f} \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix} ; \pi = \begin{pmatrix}
0 & 0 & 0 & h_1 \\
0 & 0 & 0 & h_2 \\
0 & 0 & 0 & C \\
h_1^* & h_2^* & C^* & \phi
\end{pmatrix}
\]

- Potential of π is zero at tree level
- EW symmetry breaking is induced dynamically —via SU(4) violating interactions
Gauge Sector

Gauge symmetry

\[SU(2)_L \times SU(2)_R \times U(1)_{B-L} \]

\[\langle H \rangle = f \]

\[\Downarrow \]

\[U(1)_Y \]

left-right symmetry \(\Rightarrow g_L = g_R = g_2 \)

Massive gauge bosons: \(W_H^\pm \) and \(Z_H \) with masses

\[m_{Z_H}^2 \sim \frac{g_1^2 + g_2^2}{g_2^2} m_{W_H^\pm}^2 \]

\[m_{W_H^\pm}^2 = \frac{1}{2} g_2^2 f^2 \cos^2 \frac{v}{f} \]

\(Z' \) searches \(\Rightarrow f \gtrsim 2 \text{ TeV} \)
Fermion Sector

Light fermion masses come from terms

\[
\frac{(\overline{Q}_R H_R)(H_L^\dagger Q_L)}{\Lambda} \quad \text{and} \quad \frac{(\overline{Q}_R H_R^\dagger)(H_L Q_L)}{\Lambda}
\]

for down and up type respectively. Too small for top quark introduce one vector-like pair of quarks \(T_L \) and \(T_R \). We can write

\[
y \overline{Q}_R H_R^\dagger T_L + y \overline{Q}_L H_L^\dagger T_R + MT_L T_R
\]

\[
m_T^2 \sim M^2 + y^2 f^2
\]

- Preserve L-R symmetry
- \(M \) can be arbitrarily small
Cancellations

To see explicitly how are the quadratic divergent m^2 of h_L cancelled, go to the non-linear representation

\[
\begin{pmatrix}
 H_L \\
 H_R
\end{pmatrix}
= H \sim
\begin{pmatrix}
 i h_L \\
 0 \\
 f - \frac{1}{2} \frac{h_L^\dagger h_L}{f}
\end{pmatrix}
\]

for top sector

\[
\bar{Q}_L H_L t_R + \bar{Q}_R H_R T_L = i \bar{Q}_L h_L t_R - \frac{1}{2} \frac{h_L^\dagger h_L}{f} T_L T_R + f T_L T_R + \ldots.
\]
\[
\begin{pmatrix}
\begin{array}{c}
H_L \\
H_R
\end{array}
\end{pmatrix} = H \sim \begin{pmatrix}
\begin{array}{c}
\begin{array}{c}
ih_L \\
0
\end{array} \\
\begin{array}{c}
f - \frac{1}{2} \frac{h_L^\dagger h_L}{f}
\end{array}
\end{array}
\end{pmatrix}
\]
for the gauge sector

\[
|D_L H_L|^2 + |D_R H_R|^2 = h_L^\dagger A^\dagger A h_L - h_L^\dagger h_L (A^\dagger A)_{22}
\]
Figure 1: $A^a_{L\mu}$ and $A^a_{R\mu}$
EW Symmetry Breaking

The mass of the Higgs doublet get a one loop correction from the top sector

$$ m^2 = - \frac{3}{8\pi^2} y^2 f^2 \ln\left(\frac{\Lambda^2}{f^2}\right) $$ (1)

large f required by Z' searches reintroduced certain amount of fine tuning. To decouple this constraint from the tuning problem,

- Order an extra scalar \hat{H}
- Impose $\hat{H} \rightarrow -\hat{H}$ symmetry
 so \hat{H} does not couple to fermions.
- Require $<\hat{H}> = \hat{f} >> f$
So Far

\[m_{Z_H}^2 \sim \frac{g_1^2 + g_2^2}{2}(\hat{f}^2 + f^2) \]
\[m_T^2 \sim M^2 + y^2 f^2 \]

and

\[\Delta m^2 = -\frac{3}{8\pi^2 y^2 f^2} \ln \left(\frac{\Lambda^2}{f^2} \right) \]

\(f \) is now allowed to be \(< \text{TeV} \Rightarrow \) fine tuning is milder
Higgs Potential and Fine Tuning

– Higgs m^2 get a negative contribution from top loop
– Positive contribution from gauge loop
– Tuning these two terms to get correct EW symmetry breaking fix \hat{f} with f
– Fine tuning is $\sim 11\%$ for $f=800$ GeV and 27% for $f=500$ GeV with the best case scenario $\Lambda = 4\pi f$
µ Terms

– With 2 Higgs, Global symmetry is $U(4) \times U(4)$
– There are separate global $U(1)$ factors for H and \hat{H}
– They are broken by f and $\hat{f} \Rightarrow 2$ Goldstone bosons
– One is eaten by Z_H, The other left uneaten, it is the ϕ^0
– This global $U(1)$ is exact $\Rightarrow \phi^0$ remain massless

Add a mass term

$$BH_R^\dagger \hat{H}_R + \mu^2 \hat{H}^\dagger_L \hat{H}_L$$

These are technically natural. $\hat{H}_L \rightarrow -\hat{H}_L \Rightarrow$ dark matter
Summary

new parameters: \(f, \hat{f}, y, M, \sqrt{B} \) and \(\mu \) (very few)

- \(\hat{f} \) is fixed by \(f \) to get \(m_W \)
- \(y \) is fixed by \(m_t \)
- \(M \) is arbitrary. It can even be zero
- Free parameters \(\mu \) and \(\sqrt{B} \)

new particles:

- \(W^\pm_H, Z_H \)
- \(T_H \)
- 14-6=8: \(h^0, \hat{h}_L, \phi^+_R \) and \(\phi^0_R \)
Generic Spectrum

- Z_H: $\sim \hat{f} \sim 2.5m_{t_H}$
- W_H: $\sim \hat{f} \sim 2m_{t_H}$
- t_H: $\sim f$
- \hat{H}_L, ϕ^\pm, h^0: $\sim 0.4m_{t_H}$, $\sim 0.3m_{t_H}$, $\sim 170GeV$
- ϕ^0: $2\sqrt{B}$
"Linearize" Non-Linear Representation

\[H = i \frac{\sin \sqrt{\chi}}{\sqrt{\chi}} e^{i \phi} \begin{pmatrix} h_1 \\ h_2 \\ C \\ \phi - i f \sqrt{\chi} \cot \sqrt{\chi} \end{pmatrix} \]

\[\phi \rightarrow \frac{\hat{f}}{\sqrt{2} F (\cos x + \frac{\sin x}{x})} \phi \]

\[h_1 \rightarrow 0 \]

\[h_2 \rightarrow \frac{v + h}{\sqrt{2}} - i \frac{x \hat{f}}{\sqrt{2} F (\cos x + \frac{\sin x}{x})} \phi \]

\[C \rightarrow - \frac{x \hat{f}}{F \sin x} C \]
Conclusion

– Left-right model

* Both gauge and Yukawa couplings break SU(4) but preserve the Z_2 symmetry
* Predict :
 · Extra gauge bosons W^\pm_H and Z_H with mass few TeV
 · Extra top quarks of mass $\sim f$
 · Scalar fields h_L, \hat{h}_L, ϕ^\pm and ϕ^0 which are relatively lighter
* Dark matter candidate
* Solve the fine tuning up to 10 TeV
* Very few parameters : f, \hat{f}, M, μ and \sqrt{B}
* Expect LHC to see these exotic particles and test the model