Phenomenology of Universal Extra Dimensions

K.C. Kong

In collaboration with:

K. Matchev
hep-ph/0509119, hep-ph/06xxxxxx,

A. Datta, K. Matchev
hep-ph/0509246,

M. Battaglia, A. Datta, A. De Roeck, K. Matchev

SUSY 2006
University of California, Irvine
June 15, 2006
Outline

• Universal Extra Dimensions (UEDs)

• Astrophysical Implications
 – Relic Density of KK Dark Matter
 – Direct Detection Limit

• Collider Phenomenology of UEDs
 – Level 2 search at the LHC
 – Spin determinations (at the LHC and a linear collider)

• Summary
Hints for New Physics Beyond the Standard Model

- **Dark Matter**: 23% of the unknown in the universe
 - Best evidence for new physics beyond the Standard Model: if the dark matter is the thermal relic of a WIMP, its mass should be of the weak scale
 \[\Omega_{WIMP} \sim \left(\frac{1}{10^2 \alpha} \right)^2 \left(\frac{M_{WIMP}}{1 \text{ TeV}} \right)^2 \]
 - Requires a stable (electrically) neutral weakly interacting particle at \(\mathcal{O}(1) \) TeV
 - To be stable, it should be the lightest particle charged under a new symmetry

- **Electroweak precision measurements**
 - There is no evidence of deviations of the EW observables from the SM predictions
 - New physics contributions to the EW observables should be suppressed
 - Possible if new particles are charged under a new symmetry under which SM is neutral
 - Their contributions will be loop-suppressed and the lightest particle is stable

⇒ **Collider implications**:
 - Pair production of new particles
 - Cascade decays down to the lightest particle give rise to missing energy plus jets/leptons
 - KK-parity in UED
“Confusion scenario”

- What is new physics if we see jets/leptons + missing energy at the colliders?

- The standard answer: Supersymmetry with R-parity → for a long time, this was the only candidate

- From the above discussion, we see that any new physics satisfying hints we have may show up at the LHC with similar signals

- Michael Peskin’s name for different kinds of new heavy particles whose decay chains result in the same final state

- How can we discriminate SUSY from confusion scenarios?

- How do we know new physics is SUSY?

- UEDs, Little Higgs ···
Universal Extra Dimensions

- Each SM particle has an infinite number of KK partners
 - The number of KK states = ΛR (Λ is a cut-off)
- KK particle has the same spin as SM particle with a mass, $\sqrt{\frac{n^2}{R^2} + m^2}$
 - SM particles became massive through electroweak symmetry breaking
 - KK gauge bosons get masses by eating 5th components of gauge fields (Nambu-Goldstone bosons) and EWSB shifts those masses
- All vertices at tree level satisfy KK number conservation
 $$|m \pm n \pm k| = 0 \text{ or } |m \pm n \pm k \pm l| = 0$$
- KK number conservation is broken down to KK-parity, $(-1)^n$, at the loop level
 - The lightest KK partner at level 1 (LKP) is stable \Rightarrow DM?
 - KK particles at level 1 are pair-produced
 - KK particles at level 2 can be singly produced
 - Additional allowed decays: $2 \rightarrow 00$, $3 \rightarrow 10$, \cdots
 - No tree-level contributions to precision EW observables
- New vertices are the same as SM interactions
 - Couplings between SM and KK particles are the same as SM couplings
 - Couplings among KK particles have different normalization factors
- There are two Dirac (KK) partners at each level n for one Dirac fermion in SM
- For two UEDs, see Burdman’s talk
Tree level and radiative corrections

- Tree level mass $m_n = \sqrt{\left(\frac{n}{M}\right)^2 + m^2}$, e_1 is stable ···
- Radiative corrections are important!
- All but LKP decay promptly \rightarrow missing energy signals
Relic Density Code

- **Kong and Matchev (UF, 2005)**
 - Fortran
 - Includes *all* level 1 KK particles
 - has a general KK mass spectra (all KK masses are, in principle, different)
 - can deal with different types of KK dark matter ($\gamma_1, Z_1, \nu_1 \cdots$)
 - improved numerical precision
 * use correct relativistic velocity expansion ($\langle \sigma v \rangle = a + b \langle v^2 \rangle$)
 * use temperature dependent degrees of freedom ($g_* = g_*(T_F)$)

- **Servant and Tait (Annecy/ANL, 2002)**
 - First code (γ_1 or ν_1 dark matter)
 - has cross sections in Mathematica, assuming same KK masses
 - use approximate relativistic velocity expansion
 - use approximate degrees of freedom ($g_* = 92.25$)

- **Kribs and Burnell (Oregon/Princeton, 2005)**
 - has cross sections in Maple, assuming same KK masses (γ_1 dark matter)
 - do not use relativistic velocity expansion
 - deal with coannihilations with all level 1 KK

- **Kakizaki, Matsumoto and Senami (Bonn/KEK/Tokyo, 2006)**
 - interested in resonance effects (γ_1 dark matter) → See Senami’s talk
Improved result

(Kong, Matchev, hep-ph/0509119)

- Improvements in our calculation:
 - Include all coannihilations: many processes (51×51 initial states)
 - Keep KK masses different in the cross sections:
 - Use temperature dependent g_*
 - Use relativistic correction in the b-term

- a: $\gamma_1\gamma_1$ annihilation only
 (from hep-ph/0206071)
- b: repeats the same analysis but
 uses temperature dependent g_* and relativistic correction
- c: relaxes the assumption of KK mass degeneracy
- MUED: full calculation in MUED including all coannihilations with the proper choice of masses
- Preferred mass range: $500 - 600$ GeV
 for $0.094 < \Omega_{CDM} h^2 < 0.129$
 →See Senami’s talk for resonances
Dark matter in nonminimal UED

- The change in the cosmologically preferred value for R^{-1} as a result of varying the different KK masses away from their nominal MUED values (along each line, $\Omega h^2 = 0.1$)

![Graph showing the cosmologically allowed LKP mass range in nonminimal UED](Kong, Matchev, hep-ph/0509119)

- In nonminimal UED, Cosmologically allowed LKP mass range can be larger
 - If $\Delta = \frac{m_1 - m_{\gamma_1}}{m_{\gamma_1}}$ is small, m_{LKP} is large, UED escapes collider searches
 - But, good news for dark matter searches
CDMS (Spin independent): B_1 and Z_1 LKP

(Baudis, Kong, Matchev, Preliminary)

- **SuperCDMS (projected)**
 - A (25 kg), B (150 kg), C (1 ton)

- $\Delta q_1 = \frac{m q_1 - m \gamma_1}{m \gamma_1}$

- **Z_1 LKP in nonminimal UED:**
 - $\Delta Q_1 = \frac{m Q_1 - m Z_1}{m Z_1}$
 - $\Delta g_1 = 0.2$
 - $\Delta_1 = 0.1$
Both have similar diagrams → same signatures!
 - At first sight, it is not clear which model we are considering

The decay chain is complicated

A lot of jets → correct jet identification is difficult → ISR/FSR add more confusion

UED discovery reach at the Tevatron and LHC: (Cheng, Matchev, Schmaltz, hep-ph/0205314)
 - Reach at the LHC: $R^{-1} \sim 1.5$ TeV with 100 fb$^{-1}$ in $4l + \not{E}_T$ channel
 - UED search by CMS group (full detector simulation)
 - See Dannheim’s talk for ATLAS study
How to discriminate:

- **Level 1 just looks like MSSM with LSP dark matter:**

 (Cheng, Matchev, Schmaltz, hep-ph/0205314)

- **Can we discriminate SUSY from UED?**

<table>
<thead>
<tr>
<th></th>
<th>SUSY</th>
<th>UED</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many new particles</td>
<td>1*</td>
<td>KK tower</td>
</tr>
<tr>
<td>Spin of new particles</td>
<td>differ by $\frac{1}{2}$</td>
<td>same spins</td>
</tr>
<tr>
<td>Couplings of new particles</td>
<td>same as SM</td>
<td>same** as SM</td>
</tr>
<tr>
<td>Masses</td>
<td>SUSY breaking</td>
<td>boundary terms</td>
</tr>
<tr>
<td>Discrete symmetry</td>
<td>R-parity</td>
<td>KK-parity $= (-1)^n$</td>
</tr>
<tr>
<td>Dark matter</td>
<td>LSP ($\tilde{\chi}_1^0$)</td>
<td>LKP (γ_1)</td>
</tr>
<tr>
<td>Generic signature**</td>
<td>E_T^*</td>
<td>E_T^*</td>
</tr>
</tbody>
</table>

* $N = 1$ SUSY
** Couplings among some KK particles may have factors of $\sqrt{2}$, $\sqrt{3}$, \cdots
*** with dark matter candidates

- **Finding KK tower:** Datta, Kong, Matchev, hep-ph/0509246
- **Spin measurements:** Barr, hep-ph/0405052
 Smillie, Webber hep-ph/0507170
 Datta, Kong, Matchev, hep-ph/0509246 — see Plehn and Wang’s talks
- **Cross section:** Datta, Kane, Toharia, hep-ph/0510204
Implementation of UED in Event Generators

- **Datta, Kong and Matchev (UF, 2004)**
 - Full implementation of level 1 and level 2 in CompHEP/CalcHEP (spin information)
 - Provided for implementation in PYTHIA
 - Two different mass spectrum possible:
 * A general mass spectrum in Nonminimal UED
 * All masses/widths calculated automatically in Minimal UED
 - Used for dark matter study/collider studies
 - Used for ATLAS and CMS ($4\ell + \not{E}_T, nj + ml + \not{E}_T \cdots$)

- **Alexandre Alves, Oscar Eboli, Tilman Plehn (2006)** → see Plehn’s talk
 - Level 1 QCD and decays only in MADGRAPH (spin information!)

- **Wang and Yavin (Harvard, 2006)** → see Wang’s talk
 - Level 1 QCD and decays only in HERWIG (full spin information)

- **Smillie and Webber (Cambridge, 2005)**
 - Level 1 QCD and decays only in HERWIG (full spin information)

- **Peskin (Stanford, in progress)**
 - Level 1 QCD and decays only in PANDORA (full spin information)

- **El Kacimi, Goujdami and Przysiezniak (2005)**
 - Level 1 QCD and decays only in PYTHIA (spin information is lost)
 - Matrix elements from CompHEP/CalcHEP
Two resonances
(Datta, Kong, Matchev, hep-ph/0509246)

- Level 2 resonances can be seen at the LHC:
 - up to $R^{-1} \sim 1$ TeV for 100 fb$^{-1}$, $M_{ab}^2 = (p_a + p_b)^2$
 - covers dark matter region of MUED
- Mass resolution:
 - $\delta m = 0.01 M_{V_2}$ for e^+e^-
 - $\delta m = 0.0215 M_{V_2} + 0.0128 \left(\frac{M_{V_2}^2}{1 \text{TeV}}\right)$ for $\mu^+\mu^-$
- Narrow peaks are smeared due to the mass resolution
- Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED?
 - Not quite: resonances could still be interpreted as Z’s
 - Smoking guns:
 * Their close degeneracy
 * $M_{V_2} \approx 2 M_{V_1}$
 * Mass measurement of W_2^\pm KK mode
- However in nonminimal UED models,
 degenerate spectrum is not required
 → just like SUSY with a bunch of Z’s
 → need spins to discriminate
Spin measurement

- Spin measurement is difficult
 - LSP/LKP is neutral → missing energy
 - There are two LSPs/LKPs ⇒ cannot find CM frame
 - Decay chains are complicated → cannot uniquely identify subchains
 - Look for something easy: look for 2 SFOS leptons, $\tilde{\chi}_2^0 \to \ell^\pm \ell^\mp \tilde{\chi}_1^0$ or $Z_1 \to \ell\ell_L^1 \to \ell^+\ell^-\gamma_1$
 - Dominant source of $\tilde{\chi}_2^0/Z_1$: squark/KK-quark decay

$$\tilde{q} \to q\tilde{\chi}_2^0 \to q\ell^\pm\ell^\mp \tilde{\chi}_1^0 \text{ or } Q_1 \to qZ_1 \to \ell\ell_L^1 \to \ell^+\ell^-\gamma_1:$$

- Study this chain: Observable objects are q and ℓ^\pm
- Can do: $M_{\ell^+\ell^-}$, $M_{q\ell^-}$ and $M_{q\ell^+}$ where $M_{ab}^2 = (p_a - p_b)^2$
- Which jet? Which lepton? Charge of jets (q and \tilde{q})?

$$M_{\ell^+\ell^-}, \text{ Asymmetry } = A^{+-} = \frac{(d\sigma/dm)_{q\ell^+} - (d\sigma/dm)_{q\ell^-}}{(d\sigma/dm)_{q\ell^+} + (d\sigma/dm)_{q\ell^-}} \text{ (Barr, Phys. Lett. B596:205-212, 2004)}$$

- Masses don’t discriminate
Dilepton distribution

- Look for spin correlations in $M_{\ell^+\ell^-}$
- Choose a study point in one model and fake mass spectrum in the other model

(Kong, Matchev Preliminary and Smillie, Webber hep-ph/0507170)

- Why are they the same?
Dilepton distribution

- How do we fake the \(M_{\ell^+\ell^-} \) distribution?

(Smillie, Webber hep-ph/0507170)

Phase Space: \[\frac{dN}{dm} = 2\hat{m} \]

SUSY: \[\frac{dN}{dm} = 2\hat{m} \]

UED: \[\frac{dN}{dm} = \frac{4(y+4z)}{(1+2z)(2+y)} (\hat{m} + r \hat{m}^3) \]
[\(r = \frac{(2-y)(1-2z)}{y+4z} \)]

where \(\hat{m} = \frac{m_{\ell\ell}}{m_{\text{max}}^{\ell\ell}}, y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_0^0}} \right)^2 \) and \(z = \left(\frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}} \right)^2 \)

- \(|r| \leq 0.4 \) in mSUGRA
Asymmetry

- Asymmetry with UED500 mass spectrum
 \((\mathcal{L} = 10\text{fb}^{-1})\)
 (Datta, Kong, Matchev, hep-ph/0509246)

- Asymmetry with SPS1a mass spectrum
 \((\mathcal{L} = 10\text{fb}^{-1})\)
 (Kong, Matchev Preliminary)

\[
\begin{align*}
Z_1 & \rightarrow \ell \ell^1 \rightarrow \ell^+ \ell^- \gamma_1 \\
\tilde{\chi}_2^0 & \rightarrow \ell \ell \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0
\end{align*}
\]

Chirality
\[
\begin{align*}
Z_1 & \rightarrow \ell \ell^1_R \rightarrow \ell^+ \ell^- \gamma_1 \\
\tilde{\chi}_2^0 & \rightarrow \ell \ell \rightarrow \ell^+ \ell^- \tilde{\chi}_1^0
\end{align*}
\]
SPS1a mSUGRA point

(Kong, Matchev Preliminary)

- How to fake SPS1a asymmetry
 - five parameters in asymmetry: $f_q, x, y, z, m_{\tilde{q}}$
 - three kinematic endpoints: m_{qll}, m_{ql} and m_{ll}
 * $m_{qll} = m_{\tilde{q}} \sqrt{(1-x)(1-yz)}$
 * $m_{ql} = m_{\tilde{q}} \sqrt{(1-x)(1-z)}$
 * $m_{ll} = m_{\tilde{q}} \sqrt{x(1-y)(1-z)}$
 - two parameters left: f_q, x
 - minimize χ^2 in the (x, f_q) parameter space
 - minimum χ^2 when UED and SUSY masses are the same and $f_q \approx 1$

- 10% jet energy resolution + statistical error
 → χ^2 better but not enough to fake SPS1a in UED
- effect of wrong jets → asymmetry smaller ? (work in progress)

\[x = \left(\frac{m_{\tilde{q}0}}{m_{\tilde{q}}} \right)^2, \quad y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{q}0}} \right)^2, \quad z = \left(\frac{m_{\tilde{\chi}^0_1}}{m_{\tilde{\ell}}} \right)^2, \quad f_q = \frac{N_q}{N_q+N_{\tilde{q}}}, \quad f_{\tilde{q}} = \frac{N_{\tilde{q}}}{N_q+N_{\tilde{q}}}, \quad f_q+f_{\tilde{q}} = 1 \]

- see Plehn and Wang’s talks for spins/ Nojiri, Gjelsten and Miller’s talks for masses
The Angular Distribution and Threshold Scans

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

Mass determination

Cross section at threshold

\[\beta = \sqrt{1 - \frac{M^2}{E_{\text{beam}}^2}} \]

\(\frac{\partial \sigma}{\partial \cos \theta} \) \(UED \) \(\sim 1 + \cos^2 \theta \)

\(\frac{\partial \sigma}{\partial \cos \theta} \) \(SUSY \) \(\sim 1 - \cos^2 \theta \)

\(\mu^+ \mu^- + \not{E}_T \) channel
The μ Energy Distribution and Photon Energy Distribution

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

- $E_{max/min} = \frac{1}{2} M_{\mu^*} \left(1 - \frac{M_N^2}{M_{\mu^*}^2} \right) \gamma(1 \pm \beta)$
 - M_{μ^*}: mass of smuon or KK muon
 - M_N: LSP or LKP mass
- $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ with $\beta = \sqrt{1 - \frac{M_{\mu^*}^2}{E_{beam}^2}} (\mu^*$ boost)

- Smuon production is mediated by γ and Z
- On-shell $Z_2 \rightarrow \mu_1 \bar{\mu}_1$ is allowed by phase space
- Radiative return due to Z_2 pole at

$$E_{\gamma} = \frac{s-M_{Z_2}^2}{2\sqrt{s}}$$
Summary

- LHC is finally coming

- New physics beyond the SM is expected to be discovered but will we know what it is?

- Many candidates for new physics have similar signatures at the LHC (SUSY, UEDs, T-parity).

- Universal Extra Dimensions
 - provide very interesting collider and dark matter phenomenology
 - Analogy to supersymmetry makes UEDs more interesting
 - Spin measurements at the LHC
Recent papers on UED

- Spin Measurements in Cascade Decays at the LHC, hep-ph/0605296, Wang, Yavin
- Distinguishing Spins in Decay Chains at the Large Hadron Collider, hep-ph/0605286, Athanasiou, Lester, Smillie, Webber
- Relic Abundance of dark matter in the minimal universal extra dimension model, hep-ph/0605280, Kakizaki, Matsumoto, Senami
- Precision electroweak constraints on Universal Extra Dimensions revisited, hep-ph/0605207, Gogoladze, Macesanu
- It’s a Gluino, hep-ph/0605118, Alves, Eboli, Plehn
- Dark matter in universal extra dimension models: gamma(KK) versus nu(R,KK), hep-ph/0604154, Hsieh, Mohapatra, Nasri
- Resonances from two universal extra dimensions, hep-ph/0601186, Burdman, Dobrescu, Ponton
- Measuring slepton spin at the LHC, hep-ph/0511115, Barr
- Is it SUSY?, hep-ph/0510204, Datta, Kane, Toharia
- SUSY can fit any signal excess and for every single process in SUSY, there is corresponding diagram in UED!
- In principle, SUSY and UED are different. Can we distinguish two models at the LHC?