Phenomenology of Universal Extra Dimensions

K.C. Kong

In collaboration with:

K. Matchev hep-ph/0509119, hep-ph/06xxxx,

A. Datta, K. Matchev hep-ph/0509246,

M. Battaglia, A. Datta, A. De Roeck, K. Matchev hep-ph/0507284, hep-ph/0502041, hep-ph/0412251

SUSY 2006 University of California, Irvine June 15, 2006

Outline

- Universal Extra Dimensions (UEDs)
- Astrophysical Implications
 - Relic Density of KK Dark Matter
 - Direct Detection Limit
- Collider Phenomenology of UEDs
 - Level 2 search at the LHC
 - Spin determinations (at the LHC and a linear collider)
- Summary

Hints for New Physics Beyond the Standard Model

- Dark Matter: 23% of the unknown in the universe
 - Best evidence for new physics beyond the Standard Model: if the dark matter is the thermal relic of a WIMP, its mass should be of the weak scale

$$\Omega_{WIMP} \sim \left(rac{1}{10^2lpha}
ight)^2 \left(rac{M_{WIMP}}{1~TeV}
ight)^2$$

- Requires a stable (electrically) neutral weakly interacting particle at $\mathcal{O}(1)$ TeV
- To be stable, it should be the lightest particle charged under a new symmetry
- Electroweak precision measurements
 - There is no evidence of deviations of the EW observables from the SM predictions
 - New physics contributions to the EW observables should be suppressed
 - Possible if new particles are charged under a new symmetry under which SM is neutral
- Their contributions will be loop-suppressed and the lightest particle is stable
 ⇒ Collider implications:
 - Pair production of new particles
 - Cascade decays down to the lightest particle give rise to missing energy plus jets/leptons
 - KK-parity in UED

"Confusion scenario"

- What is new physics if we see jets/leptons + missing energy at the colliders?
- The standard answer: Supersymmetry with R-parity
 - → for a long time, this was the only candidate
- From the above discussion, we see that any new physics satisfying hints we have may show up at the LHC with similar signals
- Michael Peskin's name for different kinds of new heavy particles whose decay chains result in the same final state
- How can we discriminate SUSY from confusion scenarios?
- How do we know new physics is SUSY?
- UEDs, Little Higgs · · ·

Universal Extra Dimensions

- Each SM particle has an infinite number of KK partners
 - The number of KK states = ΛR (Λ is a cut-off)
- ullet KK particle has the same spin as SM particle with a mass, $\sqrt{rac{n^2}{R^2}+m^2}$
 - SM particles became massive through electroweak symmetry breaking
 - KK gauge bosons get masses by eating 5th components of gauge fields (Nambu-Goldstone bosons) and EWSB shifts those masses
- All vertices at tree level satisfy KK number conservation

$$|m \pm n \pm k| = 0$$
 or $|m \pm n \pm k \pm l| = 0$

- KK number conservation is broken down to KK-parity, $(-1)^n$, at the loop level
 - The lightest KK partner at level 1 (LKP) is stable \Rightarrow DM?
 - KK particles at level 1 are pair-produced
 - KK particles at level 2 can be singly produced
 - Additional allowed decays: $2 \rightarrow 00$, $3 \rightarrow 10$, \cdots
 - No tree-level contributions to precision EW observables
- New vertices are the same as SM interactions
 - Couplings between SM and KK particles are the same as SM couplings
 - Couplings among KK particles have different normalization factors
- There are two Dirac (KK) partners at each level n for one Dirac fermion in SM
- For two UEDs, see Burdman's talk

Mass Spectrum: Tree level and radiative corrections

(Cheng, Matchev, Schmaltz, hep-ph/0204342, hep-ph/0205314)

- Tree level mass $m_n = \sqrt{\left(\frac{n}{R}\right)^2 + m^2}$, e_1 is stable \cdots
- Radiative corrections are important!
- All but LKP decay promptly → missing energy signals

Relic Density Code

- Kong and Matchev (UF, 2005)
 - Fortran
 - Includes all level 1 KK particles
 - has a general KK mass spectra (all KK masses are, in principle, different)
 - can deal with different types of KK dark matter $(\gamma_1, Z_1, \nu_1 \cdots)$
 - improved numerical precision
 - * use correct relativistic velocity expansion $(\langle \sigma v \rangle = a + b \langle v^2 \rangle)$
 - * use temperature dependent degrees of freedom $(g_* = g_*(T_F))$
- Servant and Tait (Annecy/ANL, 2002)
 - First code (γ_1 or ν_1 dark matter)
 - has cross sections in Mathematica, assuming same KK masses
 - use approximate relativistic velocity expansion
 - use approximate degrees of freedom $(g_* = 92.25)$
- Kribs and Burnell (Oregon/Princeton, 2005)
 - has cross sections in Maple, assuming same KK masses (γ_1 dark matter)
 - do not use relativistic velocity expansion
 - deal with coannihilations with all level 1 KK
- Kakizaki, Matsumoto and Senami (Bonn/KEK/Tokyo, 2006)
 - interested in resonance effects (γ_1 dark matter) \rightarrow See Senami's talk

Improved result

(Kong, Matchev, hep-ph/0509119)

- Improvements in our calculation:
 - Include all coannihilations: many processes (51×51 initial states)
 - Keep KK masses different in the cross sections:
 - Use temperature dependent g_{st}
 - Use relativistic correction in the b-term

- a: $\gamma_1 \gamma_1$ annihilation only (from hep-ph/0206071)
- ullet b: repeats the same analysis but uses temperature dependent g_* and relativistic correction
- c: relaxes the assumption of KK mass degeneracy
- MUED: full calculation in MUED including all coannihilations with the proper choice of masses
- Preferred mass range: 500 600 GeV for $0.094 < \Omega_{CDM}h^2 < 0.129$ \rightarrow See Senami's talk for resonances

Dark matter in nonminimal UED

• The change in the cosmologically preferred value for R^{-1} as a result of varying the different KK masses away from their nominal MUED values (along each line, $\Omega h^2=0.1$)

- In nonminimal UED, Cosmologically allowed LKP mass range can be larger
 - If $\Delta=rac{m_1-m_{\gamma_1}}{m_{\gamma_1}}$ is small, m_{LKP} is large, UED escapes collider searches
 - → But, good news for dark matter searches

CDMS (Spin independent): B_1 and Z_1 LKP

(Baudis, Kong, Matchev, Preliminary)

- SuperCDMS (projected)
 A (25 kg), B (150 kg), C (1 ton)
- $\bullet \ \Delta_{q_1} = \frac{m_{q_1} m_{\gamma_1}}{m_{\gamma_1}}$

$$- \Delta_{Q_1} = \frac{m_{Q_1} - m_{Z_1}}{m_{Z_1}}$$
$$- \Delta_{g_1} = 0.2$$
$$- \Delta_1 = 0.1$$

Typical event in SUSY and UED

- Both have similar diagrams → same signatures!
 - At first sight, it is not clear which model we are considering
- The decay chain is complicated
- A lot of jets → correct jet identification is difficult → ISR/FSR add more confusion
- UED discovery reach at the Tevatron and LHC: (Cheng, Matchev, Schmaltz, hep-ph/0205314)
 - Reach at the LHC: $R^{-1} \sim 1.5~{\rm TeV}$ with $100~{\rm fb}^{-1}$ in $4l + E_T$ channel
 - UED search by CMS group (full detector simulation)
 - See Dannheim's talk for ATLAS study

How to discriminate:

• Level 1 just looks like MSSM with LSP dark matter:

(Cheng, Matchev, Schmaltz, hep-ph/0205314)

Can we discriminate SUSY from UED ?

	SUSY	UED
How many new particles	1*	KK tower
Spin of new particles	differ by $\frac{1}{2}$	same spins
Couplings of new particles	same as SM	same ^{**} as SM
Masses	SUSY breaking	boundary terms
Discrete symmetry	R-parity	$KK ext{-parity} = (-1)^n$
Dark matter	LSP $(ilde{\chi}_1^0)$	$LKP\ (\gamma_1)$
Generic signature***	$E\!$	$E\!$

^{*} N=1 SUSY

- Finding KK tower: Datta, Kong, Matchev, hep-ph/0509246
- Spin measurements: Barr, hep-ph/0405052

Smillie, Webber hep-ph/0507170

Datta, Kong, Matchev, hep-ph/0509246 →see Plehn and Wang's talks

- Cross section: Datta, Kane, Toharia, hep-ph/0510204

^{**} Couplings among some KK particles may have factors of $\sqrt{2}$, $\sqrt{3}$, \cdots

^{***} with dark matter candidates

Implementation of UED in Event Generators

- Datta, Kong and Matchev (UF, 2004)
 - Full implementation of level 1 and level 2 in CompHEP/CalcHEP (spin information)
 - Provided for implementation in PYTHIA
 - Two different mass spectrum possible:
 - * A general mass spectrum in Nonminimal UED
 - * All masses/widths calculated automatically in Minimal UED
 - Used for dark matter study/collider studies
 - Used for ATLAS and CMS $(4\ell+E_T, nj+m\ell+E_T\cdots)$
- Alexandre Alves, Oscar Eboli, Tilman Plehn (2006) → see Plehn's talk
 - Level 1 QCD and decays only in MADGRAPH (spin information!)
- Wang and Yavin (Harvard, 2006) → see Wang's talk
 - Level 1 QCD and decays only in HERWIG (full spin information)
- Smillie and Webber (Cambridge, 2005)
 - Level 1 QCD and decays only in HERWIG (full spin information)
- Peskin (Stanford, in progress)
 - Level 1 QCD and decays only in PANDORA (full spin information)
- El Kacimi, Goujdami and Przysiezniak (2005)
 - Level 1 QCD and decays only in PYTHIA (spin information is lost)
 - Matrix elements from CompHEP/CalcHEP

Two resonances

(Datta, Kong, Matchev, hep-ph/0509246)

- Level 2 resonances can be seen at the LHC:
 - up to $R^{-1}\sim 1$ TeV for 100 fb $^{-1}$, $M_{ab}^2=(p_a+p_b)^2$
 - covers dark matter region of MUED
- Mass resolution:
 - $-\delta m = 0.01 M_{V_2} \text{ for } e^+ e^-$

$$-\delta m = 0.0215 M_{V_2} + 0.0128 \left(rac{M_{V_2}^2}{1 TeV}
ight) ext{ for } \mu^+\mu^-$$

- Narrow peaks are smeared due to the mass resolution
- ullet Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED ?
 - Not quite : resonances could still be interpreted as Z's
 - Smoking guns :
 - * Their close degeneracy
 - * $M_{V_2} \approx 2M_{V_1}$
 - * Mass measurement of W_2^\pm KK mode
- However in nonminimal UED models, degenerate spectrum is not required
 - ightarrow just like SUSY with a bunch of Z's
 - → need spins to discriminate

Spin measurement

- spin measurement is difficult
 - LSP/LKP is neutral → missing energy
 - There are two LSPs/LKPs \Rightarrow cannot find CM frame
 - Decay chains are complicated → cannot uniquely identify subchains
 - Look for something easy : look for 2 SFOS leptons, $\tilde{\chi}_2^0 \to \tilde{\ell}^{\pm} \ell^{\mp} \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ or $Z_1 \to \ell \ell_L^1 \to \ell^+ \ell^- \gamma_1$
 - Dominant source of $\tilde{\chi}_2^0/Z_1$: squark/KK-quark decay $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ or $Q_1 \to q Z_1 \to \ell \ell_L^1 \to \ell^+ \ell^- \gamma_1$:

- ullet Study this chain: Observable objects are q and ℓ^\pm
- ullet Can do: $M_{\ell^+\ell^-}$, $M_{q\ell^-}$ and $M_{q\ell^+}$ where $M_{ab}^2=(p_a-p_b)^2$
- Which jet? Which lepton? Charge of jets $(q \text{ and } \bar{q})$?

$$- \ M_{\ell^+\ell^-} \text{, Asymmetry} = A^{+-} = \frac{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} - \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} + \left(\frac{d\sigma}{dm}\right)_{q\ell^-}} \text{ (Barr, Phys. Lett. B596: 205-212, 2004)}$$

Masses don't discriminate

Dilepton distribution

- \bullet Look for spin correlations in $M_{\ell^+\ell^-}$
- Choose a study point in one model and fake mass spectrum in the other model

(Kong, Matchev Preliminary and Smillie, Webber hep-ph/0507170)

• Why are they the same ?

Dilepton distribution

ullet How do we fake the $M_{\ell^+\ell^-}$ distribution ?

(Smillie, Webber hep-ph/0507170)

Phase Space :
$$\frac{dN}{d\hat{m}} = 2\hat{m}$$

$$SUSY : \frac{dN}{d\hat{m}} = 2\hat{m}$$

UED:
$$\frac{dN}{d\hat{m}} = \frac{4(y+4z)}{(1+2z)(2+y)} (\hat{m} + r \,\hat{m}^3)$$

$$r = \frac{(2-y)(1-2z)}{y+4z}$$

where
$$\hat{m}=rac{m_{\ell\ell}}{m_{\ell\ell}^{max}}$$
, $y=\left(rac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_2^0}}
ight)^2$ and $z=\left(rac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}}
ight)^2$

 $\bullet \ |r| \leq 0.4 \ \mathrm{in} \ \mathrm{mSUGRA}$

Asymmetry

ullet Asymmetry with UED500 mass spectrum ($\mathcal{L}=10 \mathrm{fb}^{-1}$)

(Datta, Kong, Matchev, hep-ph/0509246)

$$Z_1 \to \ell \ell_L^1 \to \ell^+ \ell^- \gamma_1$$

 $\tilde{\chi}_2^0 \to \ell \tilde{\ell}_L \to \ell^+ \ell^- \tilde{\chi}_1^0$

ullet Asymmetry with SPS1a mass spectrum ($\mathcal{L}=10 \mathrm{fb}^{-1}$)

(Kong, Matchev Preliminary)

Chirality
$$Z_1 \to \ell \ell_R^1 \to \ell^+ \ell^- \gamma_1$$
 $\iff \tilde{\chi}_2^0 \to \ell \tilde{\ell}_R \to \ell^+ \ell^- \tilde{\chi}_1^0$

SPS1a mSUGRA point

(Kong, Matchev Preliminary)

How to fake SPS1a asymmetry

- five parameters in asymmetry : f_q , x, y, z, $m_{\tilde{q}}$
- three kinematic endpoints : m_{qll} , m_{ql} and m_{ll}

$$* m_{qll} = m_{\tilde{q}} \sqrt{(1-x)(1-yz)}$$

$$* m_{ql} = m_{\tilde{q}} \sqrt{(1-x)(1-z)}$$

*
$$m_{ll} = m_{\tilde{q}} \sqrt{x(1-y)(1-z)}$$

- two parameters left : f_q , x
- minimize χ^2 in the (x, f_q) parameter space
- minimum χ^2 when UED and SUSY masses are the same and $f_q \approx 1$
- 10% jet energy resolution + statistical error
 - $\rightarrow \chi^2$ better but not enough to fake SPS1a in UED
- effect of wrong jets → asymmetry smaller ? (work in progress)

$$x = \left(\frac{{}^{m}_{\tilde{\chi}^{0}_{2}}}{{}^{m}_{\tilde{q}}}\right)^{2}, \ y = \left(\frac{{}^{m}_{\tilde{\ell}}}{{}^{m}_{\tilde{\chi}^{0}_{2}}}\right)^{2}, \ z = \left(\frac{{}^{m}_{\tilde{\chi}^{0}_{1}}}{{}^{m}_{\tilde{\ell}}}\right)^{2}, \ f_{q} = \frac{{}^{N_{q}}}{{}^{N_{q}+N_{\tilde{q}}}}, \ f_{\tilde{q}} = \frac{{}^{N_{\tilde{q}}}}{{}^{N_{q}+N_{\tilde{q}}}}, \ f_{q}+f_{\bar{q}} = 1$$

• see Plehn and Wang's talks for spins/ Nojiri, Gjelsten and Miller's talks for masses

The Angular Distribution and Threshold Scans

(Battaglia, Datta, De Roeck, Kong, Matchev,hep-ph/0502041)

•
$$\left(\frac{d\sigma}{d\cos\theta}\right)_{SUSY} \sim 1 - \cos^2\theta$$

$$\bullet$$
 $\mu^+\mu^- + E_T$ channel

- Mass determination
- Cross section at threshold

$$-$$
 in UED $\propto \beta$

- in MSSM
$$\propto eta^3 \left(eta = \sqrt{1 - \frac{M^2}{E_{beam}^2}}
ight)$$

The μ Energy Distribution and Photon Energy

Distribution

(Battaglia, Datta, De Roeck, Kong, Matchev,hep-ph/0502041)

- $-\ M_{\mu^*}$: mass of smuon or KK muon
- $-\ M_N$: LSP or LKP mass

$$-\gamma = rac{1}{\sqrt{1-eta^2}}$$
 with $eta = \sqrt{1-rac{M_{\mu^*}^2}{E_{beam}^2}}$ $(\mu^* \; {
m boost})$

- ullet Smuon production is mediated by γ and Z
- ullet On-shell $Z_2
 ightarrow \mu_1 ar{\mu}_1$ is allowed by phase space
- ullet Radiative return due to Z_2 pole at

$$E_{\gamma} = \frac{s - M_{Z_2}^2}{2\sqrt{s}}$$

Summary

- LHC is finally coming
- New physics beyond the SM is expected to be discovered but will we know what it is?
- Many candidates for new physics have similar signatures at the LHC (SUSY, UEDs, T-parity).
- Universal Extra Dimensions
 - provide very interesting collider and dark matter phenomenology
 - Analogy to supersymmetry makes UEDs more interesting
 - Spin measurements at the LHC

Recent papers on UED

- Spin Measurements in Cascade Decays at the LHC, hep-ph/0605296, Wang, Yavin
- Distinguishing Spins in Decay Chains at the Large Hadron Collider, hep-ph/0605286,
 Athanasiou, Lester, Smillie, Webber
- Relic Abundance of dark matter in the minimal universal extra dimension model, hep-ph/0605280, Kakizaki, Matsumoto, Senami
- Precision electroweak constraints on Universal Extra Dimensions revisited, hepph/0605207, Gogoladze, Macesanu
- It's a Gluino, hep-ph/0605118, Alves, Eboli, Plehn
- Dark matter in universal extra dimension models: gamma(KK) versus nu(R,KK), hep-ph/0604154, Hsieh, Mohapatra, Nasri
- Resonances from two universal extra dimensions, hep-ph/0601186, Burdman, Dobrescu, Ponton
- Measuring slepton spin at the LHC,hep-ph/0511115, Barr
- Is it SUSY?, hep-ph/0510204, Datta, Kane, Toharia
- SUSY can fit any signal excess and for every single process in SUSY, there is corresponding diagram in UED!
- In principle, SUSY and UED are different. Can we distinguish two models at the LHC?