2T-physics and the Standard Model

of Particles and Forces
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Success of 2T-physics for particles on worldlines.
Field theory version of 2T-physics.

Standard Model in 4+2 dimensions.

Fundamental SM,,, gives emergent SM,,,, New features:
— Avoid strong CP violation (N0 U(1)pecceiquinn: NO €lusive axion)

— New concepts on source of mass [1) dilaton, 2) higher dim.]

— New methods of investigation: duality, holography, hidden symm.,
emergent 1T spacetimes and dynamics.



Sp(2,R) gauge symmetry
(XM, PM) indistinguishable at any instant

_ i=1,2; symmetric matrix 2x2
Generalizes 1 l
reparametrization . y -y R -
S | Lop = 8, XM Py — ZAYQ;; (X, P)
Oral'p, — 36:3)#_});,?}“ = : P

Sp(2,R) ,. Ao o= u=0,1,2 , n=diag(-1,1,1)
Lie [J»“ J } ‘L’“” { Jo, €12 = | SO(1,2)=Sp(2,R)
alge_bra - Z' | | | Jr = O
required | (), (| = T(H( )i+ &0+ 810 +610%)  Jo-J1 = 0
Il - \- \. " Jo+J1 = O

3 local symmetry parameters of Sp(2 R)
Transformation
law of (X,P)

l
XY =10 (1) {3, X} = w (7) Q4 /Oy
I P v C — depends on
JPM — v |7) JQ?J': _PML = ¥ \7) C)Qij [OXM " form of Q,(X,P)

d‘-léj — (‘-)T.M n _l )| J <8 gauge fields of Sp(2,R).

2 more compared to t reparametrization

1)
2)

Quantum commutation rules
Any Lagrangian L=X".P — ...
Spinless particle in any

background

/

Example: flat

background
On = —'Y:‘Y
On=L2:L

e S
‘_i_}'.: — l'P;i‘ - X

Sp(2 R) doublet (; )

.\lj .
XM(1), i=1,2

Physical sector,

Qj; (X,P)= 0 has nontrivial solutions only if
gauge invariant

signature is (d,2) : (- - ++++...+)




Emergent spacetimes & dynamics, hidden symmetries
from gauge fixing the simplest model of 2T theory

signature of extra
gauge parameters

(d.JQ)/—'(l.Jl)

(d—1, 1)

emergent
space-time

Emergent
spacetime:
Sp(2,R) gauge
choices. Some
combination of
XM PMis fixed
as t,H.

Can fix 3 gauges,
but fix 2 or 3

Hidden
symmetry:

All images
have hidden
SO(d,2)
symmetry, for
the example.

Massless relativistic
particle

$0(d-1,1) x SO(1,1)

: spinless

spinless

Particle in

space dims.

$0(d-2) x $O(2,2) H-atom (d-1)

space dims
S0O(d) x SO(2)

Particle in d+2 spacetime

Sp(2,R) gauge symm
Lap = 0, .‘i-"“rp_‘.,?‘ — %.‘15‘{ Q.,.J; (X.P)
example: flat spacetime

Massive
relativistic
particle

Massive

S0O(d-k-1,2)x SO(k+1)

Holography: from

(d,2) to (d-1,1).
All images
holographically
represent the

same 2T system

Duality: Sp(2,R)
relates one fixed
gauge to another

some other o NS Nonrelativistic
potentials Qu==:X-X Qu=%X-P Qn,=1iP.P particle
Some black y ) i
holes S‘ti\[-dj] glﬁba‘:. symn:l‘:. v
LMV = xMpN N pt
Unitary singleton C,=1-d%4
Particle in
Harmonic AdS(d-k) x S(k)
oscillator in (d-2) k=1,2,...,(d-2)

Generalizations
spin, susy, strings,
background fields
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Unification: 2T-physics unifies diverse forms of 1T-physics into a single theory.




Fundamental concept is Sp(2,R) gauge symmetry 1) Quantum commutation rules
(XM,PM) are indistinguishable at any instant. (1998) 2)  Any Lagrangian L=X'.P — ...
Symmetry requires target space signature (d,2); 1 extra time, 1 extra space.

Gauge symmetry effectively reduces (d,2) to (d-1,1) [NOT Kaluza-Klein]

Nontrivial because of many ways of embedding (d-1,1) in (d,2)
different components of (XM ,PM) become time & Hamiltonian in (d-1,1)
same system in (d,2) looks very different 1T-dynamics depending on which (d-1,1)

Advantages/features: Notice structures in 1T-physics that were missed before
Holography, Duality, Hidden global symmetries, Unification

2T-physics works. Correct description of Nature!!

Tested and verified in simple “everyday” 1T systems, classical & quantum.
Standard Model of Particles and Forces

4+2 theory gives 3+1 theory, and explains more ... and new tools...




Field equations in 2T-physics
Derived from Sp(2,R) in hep-th/0003100; also Dirac 1936 other approach

Constraints = 0 on physical states

2| 2(p) — ( : X
X5|@) =0, PFle) =0, (X-P+P-X) l.e. Sp(2,R) gauge invariant

o) = 0.
Probability

d(X) = (X|P) amplitude
is the field

X2 (X) =0, 000 (X) =0, XM0yd (X) + 0y (X*” i (X)) =)

l kinematic #2
T d— 2
X - 0P + d — 0
X2=0

l kinematic #1
¢ (X)=d(X*)(X) (

Kinematic eom'sI say how to embed d dims in d+2 dims.

—

dynamical eq. exiended with interaction
, gauge
i T 5‘ P = | 2 y ‘
3 egs. in d+2 [{)Q{I} -V ({I}” X2 0 % = X"AX)  symmetry
=KGind (X)) =Dy (X)+ X2 (X)

I fa . I d
Lwo (X?) =2Xnd (X?), X - ,__'f‘—)o‘ (X?) =2X7%0" (X?) = =25 (X?), Physical 7 rema'\n o
OX X part of field &g = [P (X)] s,

Po(X?) =2(d+2)8 (X?) +4X25" (X?) =2(d—2)d (X?). =

Subtleties of derivatives of delta function




Action for scalar field in 2T-physics

Obtain 3 equations not just one : 2 kinematic and 1 dynamic.

BRST approach for Sp(2,R)

(@)= [ X {800 [05 (X2)] =5 (¥) B V(@) + U (@)} kestong s neory

Gauge Ipd = X2A (X) Works only for unique V(CD)%:I}%

symmetries ‘  d =2 Lo, o ‘

A andb BB =|X-0+—F—)b- EX‘ (96— bV" (®)), any b(X).
Gauge fjxed . ’ 1., d— 2 a4
versionismore S (d) = 2~ — PP — \——Pa-2
familiar looking . 2 2¢

O(X) =D (X)+ X (X) Sanﬂggngguts There is remaining gauge freedom
vooL g émainder. but and remaining gauge symmetry that is
(x c0 T T) =0 general @, sufficient to still uniquely determine V(®)
Minimizing the action _ S (X292 — V! (P
gives two equations, so get .S ({I}j = 2~ / d2X 5P ‘ {,,(, 72)\ ‘ (d__J.],
all 3 Sp(2,R) constraints +20" (X~) [X 0P + T“H

— ‘ A -

from the action : : :
kinematic #1,2 dynamical eq. ¢



Gauge symmetries for the
Standard Model in 4+2 dimensions

Guiding principles : 2Tgauge symmetry, SU(3)xSU(2)xU(1) YM gauge symmetry, renormalizability

2Teauge-symmetry given by Thereis aseparate 2Tgauge g (x)- g, (x) + N[,
R ©S ©  parameter for every field, so
remainder of every field is

Dilaton Higgs gauge freedom. PER () = gt

x |

IAD = X2A, O,H" = X2\, , . _
. . , o ¢ spans all other scalar fields, [remainders
Obe), bbBHz’ as 111 Etl(zll) proportional

to X2
- -['-! _ 2 '-L'LT ” ’“RLT
S ke = X2k X (e,

Y o H — L,

AR — 2.8 L
0% I ‘X L'l T A ("3 ' 3 families of quarks and leptons but all are
- a7 -  2(d—4) left/right quartet spinors of SU(2,2)=S0(6,2)
O(& f‘l_ﬂur = 4X d{_-.!-ﬂjr (I) d—2 :

555‘41{; similart* to Eq.(2.11)

«v. (3 span all fermions,

r spans all gauge bosons.

SU(3)xSU(2)xU(1) gauge bosons,
but all are SO(6,2) vectors



Action of the Standard Model in 4+2 dimensions

L (AWM H D)

U L (W CH) - (A0, H)

S (A VHE H D)

L(AUEE H @)= L(A)F

1 SU(3) 1 SU(2) r 1 U(1) T
G_auge L (4) — —_Tr 3 (G N (rh’ \) . —T'T‘g (I"]["i’u.-"\’ 1_,.1[,_,:;1{ \) — - B_-UN BM N '
fields 4 4 1 E
L(A4, U8R = (ﬂf* X DQY 4Gk DXQL) (fﬁ X DIk +£L=;TJ_ELL=)
quarks & 3 _ 12 _
leptons t5 (JR:E pdfs + D ,-XEIHJ) + (E.“JE Defs 4 D ,,;fﬁsj
3 families "

+ E (ﬁ‘qj X ;'D?_.',R_r + HR} D XMH_J) + _) (E‘,R; _X ,;DE-"R-" 1 ﬂH;fD _,-XL-’H-")
Yukawa (Fu) s Qe NufoHe — (g J Heals Kk
COUplIngS L [;-,IJ-L.R H} _ +Igd I~_. Q-‘L Ad}? H— LQ' J HfER ,_:-SL_QL

tO nggs " + (Euj':-j LLI J:'ﬁ-FUHJHC Ilrgf/'l HEEJR r‘x‘['L

+ (g :' L _;XE.RJ {Qe} ,.X.[.L

Higgs and
dilaton

L(A & H) = —<I>J3<I)+ (HTD;’H+ (D*H)'H) -V (3, H)

guadratic mass No F*F
terms not allowed terms

V(®,H)==(H'H - a*3*)° + V(D)

n-l—l.“‘:--'




Emergent scalars in 3+1 dimensions

lightcone type basis in 4 4+ 2 dimensions Y _ (ng Ly 1)
A = dXMaX Ny = —20XF X 4 dXRAX,, V2

+ . 1 _ Embedding of 3+1 in 4+2 defines
X7 =k, . = r‘f}\, XP = kal’ +— emergent spacetime x*. This is analog of
X B v Sp(2,R) gauge fixing
p— ){Jr" \ = = - x* and A are homogeneous coordinates
R < ? R ot
AT AT X?=0

(dE’X) 0 (X?) = kdk d*x d\ § (Hz (2}&- i'fz))
Solve (X 0+ d;?) ) = (h J ﬁ_ 1) d = ()

kinematic

equations . .

nexra  Q(X)=0(k A\ aM)= k1P (2, \)=x D
dimensions

Remalnder IS gauge freedom, remove it by
U0 6] GELGE fixing the 2Tgauge-symmetry at any A,k,x
fixing and solving _ : _ . 1 P26 (r
) . : r —1 . Dynamics ;. . 070 ()
kinematic eoms is (I) ‘X =K Ol : OOy P (X)) = ———
fields only in 3+1 (A) P(T)  onlyinas O w3 0akd,




Emergent fermions in 3+1 dimensions

LR (Y) = % v}(m (X045 UEA = (k242U =

: : l 4 component
choose X?¢,; Impose kinematical — LR | Y9 IR, . SU@72) chiral
2Tgauge symm.  eom in extra dimension —— U™ (X) =k "\ (2] fermions
choose & +' 1. L.R LR | "l,.-"','L‘R (-;1?) 2 component
Taauce svem. L Wt =0 (X)) = - SL(2,C) chiral
JAHaE Sy S QU2 ) fermions

1 "D, —ivV2(kDs — Ao\ — 2*D,) Lk (x) I [ D" (2)

/DlIIL — a : = 91/4,3
Wi \ = \f(h —U“'D p 0 2o 0
4+2 Lagrangian - R L R
descends to 3+1 1I;L A J)IIJ — _3 U!“Dj . —i gV XUTH = h
standard Lagrangian. l e i
No explicit X. standard 3+1 Yukawa term

standard 3+1 kinetic term

Translation invariance in 3+1 comes
from rotation invariance in 4+2
10



Emergent gauge bosons in 3+1 dimensions

start with kinematic equation simplifies - homogeneous

YMaxial X - A =10 X N FNM — (X 0 1 n AM — ("f-dﬁ + n AM =)

gauge

There is homogeneous

leftover YM }1 0 4 — U — }1 ()X — U A enough to 4 r= =1 urfrl U
gauge symm. gauge fix A*'=0
Solution of | I Only Al [V 1 A (L
X.A=0 4’_1 e "1_|_f —_ 1 4; independent _’_.4# (_.X ) — _A,U ( Ilﬁ , /\)
K

Use 2Tgauge symmetry to 1 . 1
eliminate VPl gauge freedom A# (Yj = _ {‘4# (z) + (,\ _ ;) V T, ,\)] = — AH (;1‘)
K

proportional to X2 K 2

F.,(X)=kF, (z), with F,, (z) = 0,4, - 8,4, —i[A,, A)] Fun is YM

gauge invariant
_F_|_-’

() = f._g;' ?H T ol A= P = «—— but 2Tgauge
(X)=k""2"F,, (x), F.,(X)=0, Fp_(X)=0. e
result is standard 1 - 1 o
3+1 YM Lagrangian L(A(X)) = _ITT' (Paun FMY) (X) = _ET?’ (B F*) (2)

‘ 11



Emergent Standard Model in 3+1 dimensions

Every term in the 4+2 action is remainders |- ¢ (X} = X)+ 04X)
. i . . . proportiona " i AN .
- proportional to k™ after solving kinematic eoms t0 X2 Ay (X) = A?U(JXH Lar (X)

- and is independent of A after 2Tgauge fixing, eliminated | ., p
by 2Tgauge| " ()&) = ‘IIO' (XH

1
K4
)| [ 4L (4 @).6(0) b 60 )

Emergent Standard Model in 3+1 has
dilaton in addition to usual matter

“dk d'z dX 6 (K (2\ - 2%))

S=7 ] K L(A, (2),6(x),h(x) ™" (2))

= {Z ] drdu 0 (2
f

Normalize to 1

h

What is new in 3+1 ?
1. Resolution of the strong CP violation problem of QCD

2. Mass generation: a) new mechanisms, b) dilaton (perhaps observable
phenomenology)

12



Resolution of the strong CP problem

strong CP problem in QCD (instantons)

fr date el T (G“”( '/\”T) can be added to the QCD action n 3+1

There is no observed CP violation 6 can be made zero if there is an extra
in the strong interactions, so U(1)pq suggested by Peccei & Quinn,
why is 6 zero or so small? but electroweak spontaneous breaking

generates a Goldstone boson = the axion.
It does not seem to exist !! So there is an
outstanding fundamental problem.

The 4+2 Standard Model solves the strong CP violation problem of OQCD

There is no term in 4+2 that can descend to the troublesome F*F terms in 3+1
No need for the Peccei-Quinn symmetry, and no elusive axion.

< Jmume renormalizable term, homogeneous of degree 0, does not exist
15vY §(Vv2 rooL My MaM3aMyMg Mg

(d°X) & (X)) 1Xan O Tr (Fagag, Faggagy) &2 seiste g
Non-renormalizable Jy

made from composite (d X) B‘UluaTT ((r 1[31[_1(11[,, "lfb) My My MMy MsMg — 0
fields OK. Good for
pion-decay, etc.

topological term vanishes: F+f_, (X') = () F_f“ (.‘X ) — 13



Mass generation via Higgs & dilaton

The 4+2 Standard Model has 2Tgauge symmetry which forbids quadratic mass terms
in the scalar potential. Only quartic interactions are permitted. - Scale invariance
Quantum effects break scale inv. But give insufficient mass to the Higgs (10 GeV).

O°H = \H (H'H — o*0?)

Fd = -20"0 (H 'H - (1-'2([)2) LV'(9)
, N U ) | -

{H (H, }\, ;T“)} — _ - {ld} (JX ):; o i— I (.(1}.) — %(1}4 — U

w\1) T ka

| " _ be of gi _ All space filled with vev. Makes sense to
E|eElee eyl S D e R NIMENSIN have dllaton & graV|ty & strings involved

small fluctuations V(. H) = SV (h, ¢)= jr —a0)’ (h+ag + 20)’

Goldstone boson due to spontaneous breaking of scale | mvanance

h+a0 —ah+0 - - N
I T I (h,@) _ 2j ( 1= o)+ 26 + V1t aw)
v1+ {it‘z\ V1+a? 4 ( )

Goldstone boson couples to everything the Higgs couples to, but with reduced
amdV  strength factor . It is not expected to remain massless because of quantum
anomalies that break scale symmetry. Can we see it ? LHC? Dark Matter?

N S 2 902 .
V(P H) = | ( Hig— (_11;-2‘1’2) +V(0)




Conclusions

Local Sp(2,R) (X,P indistinguishable) is a fundamental principle that
agrees with everything we know about Nature as embodied by the
Standard Model - 2T-physics works!

The Standard Model in 4+2 dimensions provides new guidance:
-resolves the strong CP violation problem of QCD.

-dilaton driven electroweak spontaneous breakdown.
Conceptually more appealing source for vev - choice of vacuum in string theory.

Weakly coupled dilaton, possibly not very massive; LHC ? Dark Matter ?

Beyond the Standard Model

GUTS, SUSY, gravity; all can be elevated to 2T-physics in d+2 dimensions.
Strings, branes; tensionless, and twistor superstring, 2T OK. Tensionful incomplete.
M-theory; expect 11+2 dimensions - OSp(1]|64) global SUSY.

Advantages of formulating 1T physics from the vantage point of d+2 dims:
new tools — emergent spacetimes and dynamics, unification, holography,
duality, hidden symmetries.

Hopes for nonperturbative analysis of field theory, including QCD?

15



Emergent spacetimes & dynamics, hidden symmetries
from gauge fixing the simplest model of 2T theory

signature of extra
gauge parameters

(d.JQ)/—'(l.Jl)

(d—1, 1)

emergent
space-time

Emergent
spacetime:
Sp(2,R) gauge
choices. Some
combination of
XM PMis fixed
as t,H.

Can fix 3 gauges,
but fix 2 or 3

Hidden
symmetry:

All images
have hidden
SO(d,2)
symmetry, for
the example.

Massless relativistic
particle

$0(d-1,1) x SO(1,1)

: spinless

spinless

Particle in

space dims.

$0(d-2) x $O(2,2) H-atom (d-1)

space dims
S0O(d) x SO(2)

Particle in d+2 spacetime

Sp(2,R) gauge symm
Lap = 0, .‘i-"“rp_‘.,?‘ — %.‘15‘{ Q.,.J; (X.P)
example: flat spacetime

Massive
relativistic
particle

Massive

S0O(d-k-1,2)x SO(k+1)

Holography: from

(d,2) to (d-1,1).
All images
holographically
represent the

same 2T system

Duality: Sp(2,R)
relates one fixed
gauge to another

some other o NS Nonrelativistic
potentials Qu==:X-X Qu=%X-P Qn,=1iP.P particle
Some black y ) i
holes S‘ti\[-dj] glﬁba‘:. symn:l‘:. v
LMV = xMpN N pt
Unitary singleton C,=1-d%4
Particle in
Harmonic AdS(d-k) x S(k)
oscillator in (d-2) k=1,2,...,(d-2)

Generalizations
spin, susy, strings,
background fields
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Unification: 2T-physics unifies diverse forms of 1T-physics into a single theory.




1) Massless particle: gauge fix for all v :
Xt (=1, P" (=0

. iy .
L?T = 8.TA‘WPM — 544“?622'3' (_X P)

ds’ = dXMaXNnyy = —2dX T dX ™ + dX*dX V1,

+ = T
2 ot , 2 gauge
P XM = (1, 5, x#) XX =-2X"X"+X:X"n,, =0 choices
i r 1 F made.
space-time X.P=-X*P~ X~ P* 4X"PVp =0 .
P = (0' X P }3"”) ' . reparame
. _ _sp+ p— upv = n2 — . H e
=-2PT P +PP e P wait trization
remains.
XM = (0, x+x, %) X-P=-0+%-p
Gauge invarianis: Action S , global SO(d,2) LMV=eUx}xY g MN _
emergent - .
dynargnics gauge fixed 5 = In’r(r P — %_ _2}}2)

LMNis the only
Sp(2,R) gauge
invariant

Lt# = pH Lt~ =x.p,
3
HY [y V] 'y _ X~ ! - -l
L = xlepvl L= —?;}F — X pxt

After quantum ordering : C» = %l-"’ﬂng@; =] — %
B .

same as COVaArl ant quantization in Sp(2,R) invariant space g2ap312a

17



Massive relativistic particle gauge

. 1+a 2% B ! m2z?
XM = : - )l a=, l+
2a l+a \F (2 - p}z

2
pM = [ ———, (x-p)a, p'), PP=p +m*=0.
20x-pla

5= / dr (X—”Pf* A0 XM Y ) N = [ dr (;z'e*‘pp.—aﬂg‘ (z-?2+'mz)>

MN _ vMDN _ vNDM [P =abtp —avpt, LY~ =(z-p)a,
L = XMP XVP :
[+ l'+ a P — m o
2a 2(z-p)a

conformal group warped by mass

= pt —(x-p)axt
1+a} &P

18



Field equations for fermions in 2T-physics

Wgog'd;ge X2 P2(X-P+P-X), X0, Py X g0 = Py} = 0
u | |
symmetry 1M act like SO(d,2) gamma matrices '™ M Vanishing constraints

OSp(12) on the two SO(d,2) Weyl spinors W4 (X) Wk () onphysicalstates

(/KLP) =5 (/X)qj) =0, W, (X) = chiral spinor of SO (d, 2)

kinematic #1 l \ _ f

(i . .
- ~ ¢ 2\ AN (Y X .9+ — v, — 0. kinematic #2
s (}1) — 0 ()L ) AW [}ﬂ ( o ‘)) ]XQZO ~ (homogeneous)
used X X = X% and X% (X?) =0

Notation: X = "M X, ﬁ = f”()u

=

_/KFIII} — (). Dynamic eq. of motion
LA PR xe=0 T

19



Action for fermion field in 2T-physics

Obtain 3 equations not just one : 2 kinematic and 1 dynamic.

So () — i} / ( 442 Y) 5 ( 2) (11; /1(;)11; IR/, /)KKIJ)
S0 (W) = / (d+2X) & (}sz) o { X DU — (X + E)T+ (_j) xp] + h.c.
. f s

kinematic #1 dynamical eq. Kinematic #2

Although it looks like one equation one can show that each term vanishes separately due to X2=0.

_ o — o § L Ye e a T 1 . .. Minimizing the action
5.0 — X2C, + G A lermionic 2Tgauge-symmetry  gives wo equations,
| f f

dio. " sogetall OSp(1]2)
@2) =0
X2=0

. . X -9 + : .
Any general spinor. Homogeneous spinor. ( 2 constraints as eom s

Eliminates all spinor  Eliminates half of the leftover from the action
components spinor to remain with spinor in
proportional to X?>=0. d dimensions rather than

spinor in d+2

These kinematic + dynamical equations for left/right spinors in d+2 dimensions
descend to Dirac equations for left/right spinors in d dimensions.

Extra components are eliminated because of kappa type fermionic symmetry. 20



Yukawa interactions in 2T-physics

Sint (1, scalars) = / (a"m){ ) o (XQ) [\FL XU 5 (scalars) + hmz}

Plois a 4 of SU(2,2) U is a4* UL jga 4*
4% x 4" antisymmetrized is
the SO(6,2) vector WL, vk

fermionic gauge transformation
o (WF AWH) = (A7 + GTA) AT+ 08 XX+ NG
= X [(C AW TE XCR) + (RO )

vanishes against
delta function

d=4 SO(4,2)
group theory
explains why
there should
be XM

2Tgauge symmetry
also explains why
there should be XM

scalars) — _a—a  Mmustinclude dilaton factor @ if d is not 4
(scatars)= gn H®~ =2 dye to 2Tgauge symmetry, or homogeneity 21



Equations for gauge fields in 2T-physics

two approaches give the same kinematic equations for Ay
1) OSp(2]2) superquartet (i1, ¢3!, XM pPM) worldline gauge symmetry for spin 1

2) Spinless particle in gauge field background, and subject to Sp(2,R) gauge
symmetry. Then the gauge field background must be kinematically constrained.

X M F MN — O? where F MN — au 4\ — 6)\ A M — 1 ga {41[ 4\}
In the fixed

X ) A — O : XUFU\ — (X . U —+ l) A\ — O axial’ gauge

it amounts to
homogeneity

The dynamical equation follows from the OSp(2|2) approach

2d—4) 4o+ must include dilaton factor
(Dﬂ.-j’ ((1} Td—2 Fﬂ'”" ) ) — SOUTCES. @ if d is not 4 due to
X2=0

2Tgauge symmetry, or

homogeneity 27



Action for gauge fields in 2T-physics

Obtain kinematic and dynamic equations from the action

_ . l . _ - i 2(d—4) -
S(A)=—- / (d*2X) 6 (X?) & a2 Tr (FynFMY)
4 dynamical eq.
CO AN ) XZ D ((I) dg ;)PU\)
OSA) =[xy aay X ) D
120 70{_2 5 (%2) X E'LIEM;\

kinematic #1,2

2T gauge-symmetry with the transformation

with (X-D+d—1)ay — XyD-aly._y =0, and X -a = 0.

Au (X) = 43, (X) + X2y (X)

remainder can be
removed by gauge symm.

23



	2T-physics and the Standard Model �of Particles and Forces�Itzhak Bars (USC)
	Sp(2,R) gauge symmetry          (XM,PM) indistinguishable at any instant
	Emergent spacetimes & dynamics, hidden symmetries    from gauge fixing the simplest model of 2T theory
	2T-physics
	Conclusions
	Emergent spacetimes & dynamics, hidden symmetries    from gauge fixing the simplest model of 2T theory
	Massive relativistic particle gauge

