Spontaneous Partial Breaking of $\mathcal{N}=2$ Supersymmetry and the U(N) Gauge Model

with K.Fujiwara & M.Sakaguchi
Osaka City Univ. &
Okayama Institute for Quantum Physics
· [hep-th/0409060] Prog.Theor.Phys. 113 (2005) 429-455
· [hep-th/0503113] Nucl.Phys.B 723 (2005) 33-52
· [hep-th/0510255] Nucl.Phys.B 740 (2006) 58-78

- original construction
- properties
- ullet manifestly $\mathcal{N}=2$ SUSY formulation
- ullet inclusion of $\mathcal{N}=2$ matter

c.f.

with K.Maruyoshi

· [hep-th/0603180]

I). Introduction

- $\bullet \ \ \text{basic mechanism:} \ \ \left\{ \bar{Q}^j_{\dot{\alpha}}, \mathcal{S}^m_{\alpha i}(x) \right\} = 2 (\sigma^n)_{\alpha \dot{\alpha}} \delta_i^{\ j} T^m_n(x) + (\sigma^m)_{\alpha \dot{\alpha}} C_i^{\ j}$
- $\cdot C_i^{j}$: not a VEV but follows simply from the algebra.
- · permitted by the Jacobi id. constraints.
- not modify the SUSY algebra on the elementary fields.

The model:

- $\mathcal{N}=2$ U(N) gauge group. (cf. U(1) case Antoniadis-Partouche-Taylor in 1995)
- $\bullet \ \ \ \ \, \ln \mathcal{N}=1 \ \ \ \ \, \\ \Phi^a=(A^a,\psi^a,F^a), \ \ V^a=(v_m^a,\lambda^a,D^a)$
- noncanonical kinetic term from the Kähler ptl and gauged .
- ullet three parameter $e,\ m$ and ξ

The model predicts:

- $C_i^{\ j} = 4m\xi\tau_1 \stackrel{90^{
 m o}{
 m rot.}}{\longrightarrow} 4m\xi\tau_3$ The scalar ptl VEV $\langle\langle\mathcal{V}\rangle\rangle = \mp 2m\xi = 2|m\xi|$
- ... Half of the supercharges annihilates the vacuum while the remaining half takes $\infty \sim |m\xi| \int d^4x$ matrix elements.
- .: Partial Breaking of Extended SUSY is a Reality.

II). Original $\mathcal{N}=2$ Strategy and Our Model

$$\lambda_i^a = \begin{pmatrix} \lambda^a \\ \psi^a \end{pmatrix} \rightarrow \lambda^{ia} = \begin{pmatrix} \psi^a \\ -\lambda^a \end{pmatrix} = R\lambda_i^a R^{-1}$$

$$R\delta_{\eta_1=\theta}^{(1,\xi)}R^{-1} \equiv \delta_{\eta_2=\theta}^{(2,-\xi)} \quad \text{ so that } \ 0 = \delta_{\eta_2=\theta}^{(2,\xi)}S(\xi) \quad \text{follows from } \ R\delta_{\eta_1=\theta}^{(1,\xi)}S(\xi)R^{-1} = 0$$

Kähler: kinetic term for A

$$\mathcal{L}_K = \int d^2\theta d^2\bar{\theta} \ K(\Phi^a, \bar{\Phi}^a), \quad K = \frac{i}{2}(\Phi^a\bar{\mathcal{F}}_a - \bar{\Phi}^a\mathcal{F}_a),$$

- $\bullet \ \ \mathsf{U}(\mathsf{N}) \ \ \mathsf{gauging} \quad \mathcal{L}_{\Gamma} = \int d^2\theta d^2\bar{\theta} \Gamma, \qquad \Gamma = \left[\int_0^1 d\alpha e^{\frac{i}{2}\alpha v^a (k_a k_a^*)} v^c \mathfrak{D}_c \right]_{v^a \to V^a}$
- $\bullet \text{ gauge kinetic action } \overset{\circ}{\mathcal{L}_{\mathcal{W}^2}} = -\frac{i}{4} \int d^2\theta \tau_{ab} \mathcal{W}^a \mathcal{W}^b + c.c. \ , \quad \mathcal{W}_\alpha = -\frac{1}{4} \bar{D} \bar{D} e^{-V} D_\alpha e^V$
- •superpotential $\mathcal{L}_W = \int d^2\theta \ W(\Phi) + c.c.$ Fayet-Iliopoulos D-term $\mathcal{L}_D = \xi \int d^2\theta d^2\bar{\theta} V^0 = \sqrt{2} e^{-c}$

The total action
$$\mathcal{L} = \mathcal{L}_K + \mathcal{L}_\Gamma + \mathcal{L}_{\mathcal{W}^2} + \mathcal{L}_W + \mathcal{L}_D$$

• Impose R invariance. $-\frac{i}{4}g^{cd^*}\partial_c\tau_{ab}\partial_{d^*}\overline{W} = \frac{1}{2}g^{cd^*}\partial_cWg_{ad^*,b} - \frac{1}{2}\partial_a\partial_bW$,

The solution $W = eA^0 + m\mathcal{F}_0$, $\tau_{ab} = \mathcal{F}_{ab}$

III). Transformation Laws and Analysis of Vacua

Doublet of fermions
$$\mathbf{\lambda}_{I}^{\ a} \equiv \begin{pmatrix} \lambda^{a} \\ \psi^{a} \end{pmatrix}$$
 & parameters $\mathbf{\eta}_{I} \equiv \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}$.
$$\mathbf{\delta} \mathbf{\lambda}_{J}^{\ a} = (\sigma^{mn} \mathbf{\eta}_{J}) v_{mn}^{a} + \sqrt{2} i (\sigma^{m} \bar{\mathbf{\eta}}_{J}) \mathcal{D}_{m} A^{a} + i (\mathbf{\tau} \cdot \mathbf{D}^{a})_{J}^{K} \mathbf{\eta}_{K} - \frac{1}{2} \mathbf{\eta}_{J} f_{\ bc}^{a} A^{*b} A^{c} .$$

$$\mathbf{D}^{a} = \hat{\mathbf{D}}^{a} - \sqrt{2} g^{ab^{*}} \partial_{b^{*}} \left(\mathbf{\mathcal{E}} A^{*0} + \mathbf{\mathcal{M}} \mathcal{F}_{0}^{*} \right).$$

fermion bilinears

$$\mathcal{E} = (0, -e, \xi), \quad \mathcal{M} = (0, -m, 0),$$

The scalar potential of the model, $\mathcal{V} = -\mathcal{L}_{\mathrm{pot}}$ is

$$\mathcal{V} = g^{ab} \left(\frac{1}{8} \mathfrak{D}_a \mathfrak{D}_b + \xi^2 \delta_a^0 \delta_b^0 + \partial_a W \partial_{b^*} W^* \right) = \frac{1}{8} g_{bc} \mathfrak{D}^b \mathfrak{D}^c + \frac{1}{2} g^{bc} \tilde{\boldsymbol{D}}_b^* \cdot \tilde{\boldsymbol{D}}_c$$

$$\therefore \quad \langle \langle \mathcal{F}_{\underline{j}\underline{j}} \rangle \rangle \quad = \quad -2(\frac{e}{m} \mp i \frac{\xi}{m}) = -2\zeta \; ; \text{ the vac. condition}$$

$$\langle \langle g_{\underline{j}\underline{j}} \rangle \rangle \quad = \quad \mp 2 \frac{\xi}{m},$$

$$\langle\langle \mathbf{D}^{\underline{j}}\rangle\rangle = \frac{m}{\sqrt{N}} \begin{pmatrix} 0\\ -i\\ \pm 1 \end{pmatrix}$$

IV). Partially Broken Supersymmetry and Gauge Symmetry Breaking

$$\langle\!\langle \delta \left(\frac{\lambda^{\underline{i}} + \psi^{\underline{i}}}{\sqrt{2}} \right) \rangle\!\rangle = im \sqrt{\frac{2}{N}} (\eta_1 - \eta_2) ,$$

$$\langle\!\langle \delta \left(\frac{\lambda^{\underline{i}} - \psi^{\underline{i}}}{\sqrt{2}} \right) \rangle\!\rangle = 0 .$$

- $\mathcal{N}=2$ supersymmetry is spontaneously broken to $\mathcal{N}=1$ and we obtain the Nambu-Goldstone fermion $\frac{1}{\sqrt{2}}(\lambda^0+\psi^0)$ associated with the overall U(1) part.
- The diagonal entries $\lambda^{\underline{i}}$ of $\langle\langle A \rangle\rangle$ belong to k-2 complex roots of the vac. cond. These define a grouping of N eigenvalues into k-2 sets and hence determine a breaking pattern of U(N) gauge symmetry into a product gauge group $\prod_{i=1}^{k-2} U(N_i)$ with

$$\sum_{i=1}^{k-2} N_i = N.$$

V). Mass Spectrum

index labelling
$$a, b, \dots = \begin{cases} \alpha, \beta, \dots \text{ for unbroken generators} \\ \mu, \nu, \dots \text{ for broken generators} \end{cases}$$

• the table

field	mass	label	# of polarization states
v_m^α	0	A	$2d_u(d_u \equiv \dim \prod_i U(N_i))$
v_m^μ	$ rac{1}{\sqrt{2}}f^ u_{\mu {ar i}} \lambda^{{ar i}} $	C	$3(N^2 - d_u)$
$\frac{1}{\sqrt{2}}(\lambda^{\alpha} \pm \psi^{\alpha})$	0	A	$2d_u$
$\frac{1}{\sqrt{2}}(\lambda^{\alpha} \mp \psi^{\alpha})$	$ m\langle\langle g^{\alpha\alpha}\rangle\rangle\langle\langle \mathcal{F}_{0\alpha\alpha}\rangle\rangle $	В	$2d_u$
$\boldsymbol{\lambda}_{I}^{\mu}$	$ rac{1}{\sqrt{2}}f^{ u}_{\mu {ar i}}\lambda^{{ar i}} $	C	$4(N^2 - d_u)$
A^{α}	$ m\langle\langle g^{\alpha\alpha}\rangle\rangle\langle\langle\mathcal{F}_{0\alpha\alpha}\rangle\rangle $	B	$2d_u$
${\cal P}_{\mu}^{ ilde{\mu}}A^{\mu}$	$ rac{1}{\sqrt{2}}f^{ u}_{\mu {ar i}} \lambda^{{ar i}} $	C	$N^2 - d_u$

• $\mathcal{N} = 1$ supermultiplet

VI). Manifestly $\mathcal{N}=2$ Supersymmetric Form

in Harmonic Superspace

$$\mathcal{N}=2$$
 harmonic superspace $\mathbb{R}^{4|8}\times\mathsf{S}^2$ in the analytic basis.
$$(x_A^m,\ \theta^\pm,\ \bar{\theta}^\pm,\ u_I^\pm)=(x^m-2i\theta^I\sigma^m\bar{\theta}^Ju_{(I}^+u_{J)}^-,\ \theta^Iu_I^\pm,\ \bar{\theta}^Iu_I^\pm,\ u_I^\pm)$$
 $\mathsf{S}^2=\mathsf{SU}(2)/\mathsf{U}(1)$ is parametrized by harmonic variables $(u_I^+,u_I^-)\in SU(2)$.

- $V^{++}(x_A, \theta^+, \bar{\theta}^+, u^{\pm}) = V^{++a}t_a$; unconstrained $\mathcal{N} = 2$ vector superfield.
- $\overline{W} = -\frac{1}{4}(D^+)^2V^{--}$ with $D^+_{\alpha} = \frac{\partial}{\partial \theta^{-\alpha}}$; the curvature superfield
- $V^{--} = \sum_{n=1}^{\infty} \int dv_1 \cdots dv_n \frac{(-i)^{n+1}V^{++}(v_1)\cdots V^{++}(v_n)}{(u^+v_1^+)(v_1^+v_2^+)\cdots (v_n^+u^+)}$ is (in Wess-Zumino gauge)

$$\overline{W} = -i\sqrt{2}\overline{A} - 2\overline{\theta}^I\overline{\lambda}_I + \overline{\theta}^I\overline{\theta}^JD_{IJ} + \overline{\theta}^I\overline{\sigma}^{mn}\overline{\theta}_Iv_{mn} + \cdots$$

$$\bullet S_V = \frac{i}{4}\int d^4x \left[(\overline{D})^4\mathcal{F}^*(\overline{W}) - (D)^4\mathcal{F}(W) \right].$$

• The electric FI term whose effect is to shift the dual auxiliary field by an imaginary constant, $D_D^{aIJ} \to \mathbf{D}_D^{aIJ} \equiv D_D^{aIJ} + 8i\xi^{IJ}\delta_0^a$.

$$S_e = \int du d\zeta^{(-4)} \Xi^{++} V^{++} + c.c. = \int d^4x \xi^{IJ} D^0_{IJ} + c.c., \qquad \Xi^{++} = \xi^{IJ} u_I^+ u_J^+.$$

• The magnetic FI term $S_m^{\rm YM}$ is obtained by shifting the auxiliary field D_{IJ}^a by an imaginary constant, $D^{aIJ} \to \mathbf{D}^{aIJ} \equiv D^{aIJ} + 4i\xi_D^{IJ}\delta_0^a$;

$$S_V + S_m^{\rm YM} = -\frac{i}{4} \int d^4x (D)^4 \mathcal{F}(\hat{W}) + c.c.$$
 where $\hat{W} = W|_{D_{IJ}^a \to \mathbf{D}_{IJ}^a}$.

ullet The total action $S_{\mathrm{YM}} = S_V + S_e + S_m^{\mathrm{YM}}$ is $\mathcal{N}=2$ supersymmetric.

cf.
$$\delta_{\eta} \boldsymbol{D}^{I}{}_{J} = \delta_{\eta} D^{I}{}_{J}$$

The vacuum is determined by the scalar potential

$$= \frac{1}{2}g^{ab}\mathbf{D}_{a}^{A}|\bar{\mathbf{D}}_{b}^{A}| + g_{ab}\mathfrak{D}^{a}\mathfrak{D}^{b} + 4i(\xi^{A} + \bar{\xi}^{A})(\xi_{D}^{A} - \bar{\xi}_{D}^{A})$$
$$\mathbf{D}_{a}^{A}| = g_{ab}\mathbf{D}^{bA}| = -2\left[(\xi^{A} + \bar{\xi}^{A})\delta_{a}^{0} + (\xi_{D}^{A} + \bar{\xi}_{D}^{A})\bar{\mathcal{F}}_{0a}|\right].$$

- The shift of D induces spontaneous breaking of $\mathcal{N}=2$ SUSY to $\mathcal{N}=1$.
- By using SU(2), may choose $\xi_D^A + \bar{\xi}_D^A = (0, -m, 0)$, $\xi^A + \bar{\xi}^A = (0, -e, \xi)$ with real constants m, e and ξ . Then the vacuum condition is solved as $\langle \mathcal{F}_{\underline{i}\underline{i}} \rangle = -2(\frac{e}{m} \pm i\frac{\xi}{m})$.

VII). U(N) Gauge Model with Hypermultiplets

 $q^+(x_A,\theta^+,\bar{\theta}^+,u^\pm)$; $\mathcal{N}=2$ hypermultiplet . (ω hypermultiplets as well in our paper.) The gauged action is

$$\begin{split} S_q &= -\int\!\! du d\zeta^{(-4)} \tilde{q}_{\mu}^+ \mathcal{D}^{++} q^{+\mu} \ , \quad \mathcal{D}^{++} q^{+\mu} = D^{++} q^{+\mu} + i V^{++a} (T_a)^{\mu}{}_{\nu} q^{+\nu} \\ \text{and} \quad D^{++} &= u^{+I} \partial_{u^{-I}} - 2i \theta^+ \sigma^m \bar{\theta}^+ \partial_m + \theta^{+\alpha} \partial_{\theta^{-\alpha}} + \bar{\theta}^{+\dot{\alpha}} \partial_{\bar{\theta}^{-\dot{\alpha}}}. \end{split}$$

- Physical fields and SU(2) doublet complex scalar f^I and SU(2) singlet Weyl spinors ψ and κ .
- The U(N) isometry with the Killing potential $\mathcal{Q}^{IJ}_a=i\bar{f}^{(I)}_\mu(T_a)^\mu_{\ \nu}f^{J)\nu}$ has been gauged.
- The electric FI term is as before.

•
$$S_V + S_q + S_q + S_m^{QCD} = (S_V + S_q + S_q) \Big|_{D \to D}$$
.

That is

$$S_m^{\text{QCD}} = S_m^{\text{YM}} + \int d^4x \ 2i\hat{\mathcal{Q}}_0^{IJ}(\xi_{DIJ} - \bar{\xi}_{DIJ}) \ , \quad \hat{\mathcal{Q}}_0^{IJ} = i\bar{f}_u^{(I}(t_0)^u_v f^{J)v} \ .$$

The additional f_u -dependent term overcomes the difficulty [Partouche-Pioline'97, Ivanov-Zupnik'97] in coupling fundamental hypermultiplets.

• The total action is $S_{\text{QCD}} = S_V + S_q + S_q + S_e + S_m^{\text{QCD}}$.

The scalar potential

$$= \frac{1}{4}g_{ab}\mathbf{D}^{aIJ}|\mathbf{D}^{b}_{IJ}| + g_{ab}\mathfrak{D}^{a}\mathfrak{D}^{b} + 2i(\xi + \bar{\xi})^{IJ}(\xi_{D} - \bar{\xi}_{D})_{IJ} + \overline{f^{I}}_{u}(\bar{A}A + A\bar{A})^{u}_{v}f^{Iv} + \overline{f^{I}}_{a}(\bar{A}A + A\bar{A})^{a}_{b}f^{Ib},$$

$$\mathbf{D}^{aIJ} = -2g^{ab}\left[(\xi + \bar{\xi})^{IJ}\delta^{0}_{b} + (\xi_{D} + \bar{\xi}_{D})^{IJ}\bar{\mathcal{F}}_{0b} + \hat{\mathcal{Q}}^{IJ}_{b} + \check{\mathcal{Q}}^{IJ}_{b}\right], \quad \check{\mathcal{Q}}^{IJ}_{b} = \mathcal{Q}^{IJ}_{b}|_{T_{a}=(t_{a})}$$

require
$$\langle A^r \rangle = 0$$
 \Rightarrow Coulomb phase

• $\mathcal{N}=2$ supersymmetry is spontaneously broken to $\mathcal{N}=1$.

VIII). Perspectives

- \circ explore the Higgs phase and connection with $\mathcal{N}=2$ sugra and the super Higgs effect.
- \circ model with a more general hyperkähler manifold (with U(N) isometry).
- \circ comparison with breaking by the superpotential, namely $e,\ m,\ \xi$ v.s. $\Lambda.$
- o string theory origin and applications to phenomenology.