Multi-Brane Recombination
and Standard Model Flux Vacua

Jason Kumar
Texas A&M University
w/ James D. Wells (University of Michigan)

hep-th/0506252, 0604203
Compactify IIB on orientifolded CY 3-fold
- **N=1 SUSY**

Turn on Fluxes \Rightarrow fix complex structure moduli and axio-dilaton
- Instantons, gaugino condensation fix Kähler moduli

Add Branes \Rightarrow cancel RR-tadpoles
- Gauss’ Law (O-planes, fluxes contribute)
- Open strings \Rightarrow SM gauge group and matter

$$ W_{GVW} = \int G(\tau) \wedge \Omega(z) $$

$$ W_{NP} \propto e^{-\rho/2l_s^2} $$

$$ Q^{D3}_{flux} = \int F_{RR} \wedge H_{NSNS} $$
We want lots of flux vacua → why?

- Can use statistics to our advantage
 - Each vacuum (sol’n to F-term eqs.) will have different $\langle z \rangle$ → thus different cosmological constant, etc.
- With enough SM vacua, can statistically argue that at least some are phenomenologically viable
 - i.e. match experiments to within precision
- More flux → more flux vacua

$$N_{\text{flux}} \propto \left(\frac{Q_{\text{flux}}^{D3}}{(2n + 2)!} \right)^{2n+2}$$

Denef, Douglas
Limits set by RR-tadpoles

► Let’s take IIB on $\mathbb{T}^6/\mathbb{Z}_2 \times \mathbb{Z}_2(\times \Omega R)$
 - 64 O3-planes, 12 O7-planes
 - 3 Kähler mod., n=51 complex structure moduli
 - Flux charge quantized in units of 32

► **Flux charge** must be positive, and we want it as large as possible
 - So we want D3-brane charge as negative as possible

$$Q_{\text{flux}}^{D3} + \sum Q_{\text{brane}}^{D3} = 16 \quad \sum Q_{\text{brane}}^{D7_i} = 16$$
We put in magnetized D9-branes

- Can describe by wrapping numbers \((m_1, n_1)(m_2, n_2)(m_3, n_3)\)
- SUSY condition (BDL) from mirror is that branes to be at correct angles
- If all charges non-zero, can only satisfy angle equations if 3Q’s > 0, 1Q < 0 (BGHLW)
- Can make D3-charge negative, but not arbitrarily

\[
\sum_{i=1}^{3} \tan^{-1} \left(\frac{m_i A_i}{n_i} \right) = 0 \mod 2\pi
\]

\[
Q_{D3} = n_1 n_2 n_3
\]

\[
Q_{D7_1} = -n_1 m_2 m_3
\]

\[
Q_{D7_2} = -m_1 n_2 m_3
\]

\[
Q_{D7_3} = -m_1 m_2 n_3
\]
Loophole \rightarrow Brane Recombination

- Simple branes can deform and bind
 - Lower energy saturates BPS bound
- In field theory lang., an FI-term is turned on
- If we have scalars with appropriate charge \rightarrow SUSY is restored
 - Number and charge of scalars determined by brane intersection numbers
 - Generically, r equations for r^2 scalars \rightarrow enough for recombination

\[
\sum_{i=1}^{3} \tan^{-1} \left(\frac{m_i A_i}{n_i} \right) \approx \xi_{FI}
\]

\[
V_D = \left(\sum_i q_i |\Phi_i|^2 + \xi \right)^2
\]

\[
I_{ab} = \prod_{i=1}^{3} \left(m_i n_i^i - m_i^i n_i \right)
\]
Here are some examples...

► First a model with two stacks in the hidden sector
 ▪ 3 stacks in the visible sector
 ▪ $U(4) \times SU(2)_L \times SU(2)_R$
 ▪ Each satisfies angle eq. at points in moduli space, but not all at same point
 ▪ Add 9 units of flux charge
 ▪ $\sim 10^{33}$ SM flux vacua

► Second example has 4 stacks in the hidden sector
 ▪ Add 5 units of flux charge

► Visible sector
 ▪ $N_a = 8 (1,0)(3,1)(3,-1)$
 ▪ $N_b = 2 (0,1)(1,0)(0,-1)$
 ▪ $N_c = 2 (0,1)(0,-1)(1,0)$

► Two stack hidden sector
 ▪ $N_q = 2 (-6,1)(-5,1)(-5,1)$
 ▪ $N_r = 2 (4,1)(2,-1)(1,-1)$

► Four stack hidden sector
 ▪ $N_q = 2 (-5,1)(-5,1)(-5,1)$
 ▪ $N_r = 2 (1,-1)(1,3)(1,3)$
 ▪ $N_s = 2 (1,3)(1,3)(1,-1)$
 ▪ $N_t = 2 (1,3)(1,-1)(1,3)$
Here’s a problematic example...

- **Puzzle as** \(x \) **becomes large**...
 - Fixed D7-brane charge, does not oversaturate tadpoles
 - But D3-brane charge becomes arbitrarily negative
- Therefore, we can turn on arbitrarily large flux to cancel tadpoles
 - More flux = more SM flux vacua
 - **Good news** \(\rightarrow \) enough SM vacua for some to be viable
 - **Bad news** \(\rightarrow \) an arbitrary number are viable ... bad for predictivity
- **Odd example** \(\rightarrow \) “almost” an anti-brane \(\rightarrow \) better analysis?
 - We get an observational constraint by demanding \(Z \) be real and positive (like D3-brane)

Hidden sector
- \([- (x-1)^2, 1], [- (x-1)^2, 1], [- (x-1)^2, 1]\)
- \([1, -1], [1, x], [1, t]\)
- \([1, t], [1, -1], [1, x]\)
- \([1, t], [1, x], [1, -1]\)

Charges
- \(Q_{D3} = 6 - 2(x - 1)^6 \)
- \(Q_{D7} = 4 \)

\[Z = Q_{D3} + Q_{D71} A_2 A_3 + Q_{D7_2} A_1 A_3 + Q_{D7_3} A_1 A_2 \]
Conclusion...

- Observational cutoff is nice for “formal” predictivity, but still leaves too many vacua for comfort...
 - Using gravitational bounds... #SM vacua $\sim 10^{6172}$
 - Only need 10^{238} to fine-tune SM parameters (including c.c.) (Douglas)

- To avoid a “practical” predictivity problem, we need tighter constraints
 - Perhaps more formal constraints on how negative D3-charge of stable bound state can get?
 - Generalization of Π-stability might be the way to go...
 - Must understand how to define in case with orientifold.