GALACTIC DARK MATTER & SUSY PARAMETER SPACE

Dmitri Kazakov

JINR(Dubna) & ITEP(Moscow)

In collaboration with W. de Boer, C. Sander, V. Zhukov (Uni Karlsruhe)
and A. Gladyshev (JINR, Dubna)

Outline

• Diffuse Galactic γ Rays from EGRET
• DM annihilation in the MSSM
• Restriction to SUSY Parameter Space
• SUSY Production at LHC in EGRET Region
• Conclusions

A&A 444 (2005)17
PL B636 (2006)13
PRL 95 (2005) 209001
DIFFUSE GAMMA RAYS FROM THE SKY

Instrumental parameters:
- Energy range: 0.02–30 GeV
- Energy resolution: ~20%
- Effective area: 1500 cm²
- Angular resol.: <0.5°
- Data taking: 1991–2000

Main EGRET results:
- Catalogue of point sources
- Excess in diffuse gamma rays

EGRET All-Sky Gamma-Ray Survey Above 100 MeV
EXCESS OF DIFFUSE GAMMA RAYS ABOVE 1 GEV

A: inner Galaxy (l=±30°, |b|<5°)
B: Galactic plane avoiding A
C: Outer Galaxy
D: low latitude (10-20°)
E: intermediate lat. (20-60°)
F: Galactic poles (60-90°)
PHYSICS PROBLEMS

• What is the origin of excess of diffuse Galactic Gamma Rays?
• What is Cold Dark Matter made of?
• Where are the Supersymmetric Particles?

Solution:

• EGRET excess is due to DM annihilation
• DM is made of WIMPs which are SUSY particles distributed in Halo of our Galaxy
• SUSY Neutralinos have a mass around 60 GeV and should be observable at the LHC
EXCESS OF DIFFUSE GAMMA RAYS WITH AND WITHOUT DM ANNIHILATION

\[E^2 \times \text{flux [GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}] \]

- tot. background
- Pion decay
- Inverse Compton
- Bremsstrahlung
- \(\chi^2 \) (bg only): 178.8/7

\[E^2 \times \text{flux [GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}] \]

- tot. background
- Pion decay
- Inverse Compton
- Bremsstrahlung
- \(\chi^2 \) (bg only): 178.8/7

\[\pi^0 \]

IC
Brems

\[\pi^0 \]

IC
WIMPS
Brems
DM NEUTRALINO ANNHIILATION FINAL STATES

Dominant annihilation χ-section:
$\chi + \chi \Rightarrow A \Rightarrow bb$ quark pair

Sum of diagrams should yield $<\sigma v> = 2 \cdot 10^{-26}$ cm3/s to get correct relic density

B-fragmentation well studied at LEP!
Yield and spectra of positrons, gammas and antiprotons well known!
DM NEUTRALINO ANNIHILATION CROSS-SECTION

Dominant annihilation χ-section:
$\chi + \chi \Rightarrow A \Rightarrow$ bb quark pair
BACKGROUND + SIGNAL DESCRIBE

EGRET DATA

Blue: background uncertainty
Blue: WIMP mass uncertainty
FIT TO WIMP MASS

Heavy neutralino \(M_\chi \sim 50-80 \text{ GeV} \)

Heavy WIMP is excluded
SUSY DARK MATTER

Neutralino = SUSY candidate for the cold Dark Matter
Neutralino = the Lightest Superparticle (LSP) = WIMP

\[\tilde{\chi}^0 = N_1 \gamma + N_2 \tilde{z} + N_3 \tilde{H}_1 + N_4 \tilde{H}_2 \]

- photino
- zino
- higgsino
- higgsino

\[M_{\chi}^{\exp} \geq 40 \text{ GeV} \]
\[M_{\chi}^{\text{theor}} = 40 \div 400 \text{ GeV} \]

\[R = (-1)^{3(B-L)+2S} \]
\[R_p = +1, \quad R_p^- = -1 \]

- Superparticles are created in pairs
- The lightest superparticle is stable

SUSY’06, Irvine, 13 June, 2006
The lightest neutralino is almost bino – the superpartner of a photon
DM = superpartner of the CMB

<table>
<thead>
<tr>
<th></th>
<th>\tilde{b}^0</th>
<th>\tilde{w}^0</th>
<th>\tilde{t}_1^0</th>
<th>\tilde{t}_2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>\chi^0_1</td>
<td>0.833</td>
<td>0.026</td>
<td>0.122</td>
<td>0.018</td>
</tr>
<tr>
<td>\chi^0_2</td>
<td>0.119</td>
<td>0.621</td>
<td>0.187</td>
<td>0.072</td>
</tr>
<tr>
<td>\chi^0_3</td>
<td>0.014</td>
<td>0.030</td>
<td>0.442</td>
<td>0.515</td>
</tr>
<tr>
<td>\chi^0_4</td>
<td>0.033</td>
<td>0.323</td>
<td>0.249</td>
<td>0.395</td>
</tr>
</tbody>
</table>
MSUGRA can fulfill all constraints from WMAP, LEP, b→sγ, g-2 and EGRET simultaneously, if DM is neutralino with mass in range 50-100 GeV and squarks and sleptons are O(1 TeV)

\[m_0 \text{ common spin 0 mass} \]
\[m_{1/2} \text{ common spin } \frac{1}{2} \text{ mass} \]
\[\tan \beta = \frac{v_2}{v_1} \]

Stau coannihilation

\(m_A \) resonance

WMAP

EGRET

High \(\tan \beta \) solution

\[\tan \beta = 50 \]
EGRET POINT AND MASS SPECTRUM
FIT TO $\tan \beta$

$\tan \beta \sim 50$
Fitted SUSY Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan \beta)</td>
<td>52.2</td>
</tr>
<tr>
<td>(m_0)</td>
<td>1500 GeV</td>
</tr>
<tr>
<td>(m_{1/2})</td>
<td>170 GeV</td>
</tr>
<tr>
<td>Sign (\mu)</td>
<td>+</td>
</tr>
<tr>
<td>(A(0))</td>
<td>0</td>
</tr>
<tr>
<td>(\alpha_s(M_Z))</td>
<td>0.122</td>
</tr>
<tr>
<td>(\alpha_{em}(M_Z))</td>
<td>0.0078153697</td>
</tr>
<tr>
<td>(\sin^2 \theta_W \big</td>
<td>_{\overline{MS}})</td>
</tr>
<tr>
<td>(m_t)</td>
<td>175 GeV</td>
</tr>
<tr>
<td>(m_b)</td>
<td>4.214 GeV</td>
</tr>
</tbody>
</table>

SUSY Masses in GeV

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\chi}^0_{1,2,3,4})</td>
<td>64, 113, 194, 229 GeV</td>
</tr>
<tr>
<td>(\tilde{\chi}^{\pm}_{1,2})</td>
<td>110, 130, 516 GeV</td>
</tr>
<tr>
<td>(\tilde{u}{1,2} = \tilde{c}{1,2})</td>
<td>1519, 1523 GeV</td>
</tr>
<tr>
<td>(\tilde{d}{1,2} = \tilde{s}{1,2})</td>
<td>1522, 1524 GeV</td>
</tr>
<tr>
<td>(\tilde{t}_{1,2})</td>
<td>906, 1046 GeV</td>
</tr>
<tr>
<td>(\tilde{b}_{1,2})</td>
<td>1309, 1152 GeV</td>
</tr>
<tr>
<td>(\tilde{e}{1,2} = \tilde{\mu}{1,2})</td>
<td>1497, 1499 GeV</td>
</tr>
<tr>
<td>(\tilde{\tau}_{1,2})</td>
<td>1305, 1288 GeV</td>
</tr>
<tr>
<td>(\tilde{\nu}e, \tilde{\nu}\mu, \tilde{\nu}_\tau)</td>
<td>1495, 1495, 1286 GeV</td>
</tr>
<tr>
<td>(h, H, A, H^\pm)</td>
<td>115, 372, 372, 383 GeV</td>
</tr>
</tbody>
</table>
SIGNATURE:
4 b-jets + 4 muons + E_{t}^{miss}

LARGE!

m$_{0}$ = 1400 GeV
m$_{1/2}$ = 180 GeV
A = 0
$\text{sign}(\mu)$ = +1
$\tan \beta$ = 50

$\sigma \approx 13 \text{ pb}$
SUSY $gg \rightarrow \tilde{g}\tilde{g}$ IN ATLAS

JINR(Dubna) ATLAS Group
V. Bednyakov, Y. Budagov, G. Khoriauli, J. Khubua

Neutralino p_T

$\Delta p_T = 10$ GeV

Pythia within ATHENA, B-vertex tagging

\[\sum p_T^{B,B_{\mu\nu}} \text{(down)} - \sum p_T^{B,B_{\mu\nu}} \text{(up)} = p_T \approx E_T \]

B mesons

Selection criteria:
* $R(\text{any } B \text{ in the event}) < 0.1$ mm

Efficiency = 94%
DIRECT DM SEARCHES

Spin-independent

Spin-dependent

Predictions from EGRET data assuming Supersymmetry

SUSY’06, Irvine, 13 June, 2006
CONCLUSIONS

If one accepts:
• the interpretation of excess in diffuse galactic gamma rays as a signal of the DM annihilation
• the interpretation of the Cold Dark Matter as SUSY neutralino particles

Then:
• SUSY provides simultaneous consistent description of all observable data including astrophysics
• Parameter space of SUSY is highly restricted
• In the narrow allowed region the SUSY mass spectrum may be predicted
• Light superpartners are observable at the LHC