QCD corrections to neutralino annihilation

Heather Logan
Carleton University

- V. Barger, W.-Y. Keung, HEL, G. Shaughnessy, *work in progress*
Why calculate neutralino annihilation?

- Cross section controls dark matter relic abundance

 [Kolb & Turner]

- Cross section controls indirect detection rates

 EGRET/GLAST

 IceCube

[Olive et al]

[Bertone, Hooper & Silk 2004]
Why calculate QCD corrections?

Because they are significant in some regions of parameter space.

Neutralino annihilation xsec: \(\sigma v_{\text{rel}} = a + b v_{\text{rel}}^2 \)
- Early universe (dark matter freeze-out): \(v_{\text{rel}} \sim 1/3 \)
- Present day (halo): \(v_{\text{rel}} \sim 10^{-3} \)

Where \(\chi\chi \rightarrow \) light fermions dominates:
- s-wave cross section \(a \) is helicity-suppressed by \(m_f^2/m_\chi^2 \)
- Neutralinos are p-wave annihilators in the early universe

- Hard QCD radiation and \(\chi\chi \rightarrow gg \) through a loop lift the \(m_f^2 \) suppression
 Big effect on the s-wave cross section; not so much on the p-wave cross section.

Corrections tend to be most relevant for indirect-detection rates:
s-wave dominates at present day \((v_{\text{rel}} \sim 10^{-3}) \).
Consider $\chi\chi$ annihilation through squark exchange

Some typical diagrams:

The first diagram above can be reduced to an effective vertex described by a dimension-six operator suppressed by the squark mass $M_{\tilde{q}}$:

$$\mathcal{L} = \frac{c}{M_{\tilde{q}}^2} \mathcal{O}_6,$$

$$\mathcal{O}_6 = (\bar{\chi}\gamma_\mu\gamma_5\chi)(\bar{q}\gamma^\mu\gamma_5 q)$$

This is valid in the limit $m_\chi \ll M_{\tilde{q}}$.
In the $v_{\text{rel}} \to 0$ limit the neutralinos behave like a pseudoscalar: \mathcal{O}_6 is related to the divergence of the axial vector current of the quarks:

$$\mathcal{O}_6 = (\bar{\chi} \gamma_\mu \gamma_5 \chi)(\bar{q} \gamma^\mu \gamma_5 q) \to \left[\bar{\chi} \frac{i \gamma_5}{2m_\chi} \chi \right] \left[\partial_\mu (\bar{q} \gamma^\mu \gamma_5 q) \right]$$

- If $m_q = 0$, the axial vector current is conserved at tree level:
 $$\partial_\mu (\bar{q} \gamma^\mu \gamma_5 q) = 0$$
 This is the m_f^2/m_χ^2 suppression showing up.

- There are two ways to lift this suppression:
 1. Go beyond leading order in α_s to include the anomalous triangle diagram.
 2. Go to dimension-eight (or higher) by including hard gluon radiation.
Anomalous triangle diagram

The lifting of the m_f^2 suppression here is due to the well-known Partially Conserved Axial Current (PCAC):

$$\partial_\mu (\bar{q} \gamma^\mu \gamma_5 q) \neq 0 \text{ due to the anomaly, even when } m_q = 0.$$

The anomaly condition reads:

$$(\bar{q} \gamma^\mu \gamma_5 q) = 2m_q \bar{q} i \gamma_5 q + \frac{\alpha_s}{4\pi} G^{(a)}_{\mu\nu} \tilde{G}^{(a)\mu\nu}$$

Neglecting m_q, we can write the zero-velocity dimension-six $\chi\chi$ annihilation amplitude in the form

$$\mathcal{L}_{\text{eff}} = \left(\frac{c/m_\chi}{2M_q^2} \right) (\bar{\chi} i \gamma_5 \chi) \frac{\alpha_s}{4\pi} G^{(a)}_{\mu\nu} \tilde{G}^{(a)\mu\nu}$$

This is $\chi\chi$ annihilation into gluons.

[Still working in M_q^{-2} approximation for squark propagator.]

Expression describes one massless quark running around the loop.
Anomalous triangle diagram

- Calculation first done for $\chi\chi \rightarrow \gamma\gamma$ \cite{Rudaz 1989; Bergstrom 1989}

- Easy to extend to $\chi\chi \rightarrow gg$ \cite{Flores, Olive, Rudaz 1989}

$m_{q'} = 0$ result: (sum is over 5 light quarks; top decouples)

$$v_{rel} \sigma(\chi\chi \rightarrow gg) = \frac{\alpha_s^2}{32\pi^3 m_\chi^2} \left[\sum_{q'} \frac{|g_\ell|^2}{M_{q'}^2} + \frac{|g_r|^2}{M_{q'}^2} \right]^2$$

where

$$g_\ell = -\sqrt{2}N_{11}g' (T_3 - Q) + \sqrt{2}N_{12}gT_3, \quad g_r = -\sqrt{2}N_{11}g' Q.$$

We neglect left-right squark mixing ($m_{q'} = 0$ approximation)

- Full $m_{q'}$, $M_{q'}$ dependence is also known \cite{Drees, Jungman, Kamionkowski, Nojiri 1993}
What about beyond leading order?

$\chi\chi \rightarrow gg$ is order α_s^2: large scale dependence at leading order.

Set scale $\mu_0 = 2m_\chi$, vary between $\mu_0/2...2\mu_0$: $v\sigma$ varies by $\pm 16\%$.

At NLO, must include:

1. gluon splitting into quark or gluon pairs

2. radiation of a 3rd gluon off of the internal q' line

3. virtual corrections: gluons crossing the box, gluons connecting the box to a gluon leg

4. renormalization; e.g., gluon propagator bubbles containing quarks and gluons

The calculation is big and ugly.
Luckily we can use a trick to do it!
The trick:

Recall anomaly equation:

$$\partial_\mu (\bar{q}' \gamma^\mu \gamma_5 q') = 2m_q' \bar{q}' i\gamma_5 q' + \frac{\alpha_s}{4\pi} G^{(a)}_{\mu\nu} \tilde{G}^{(a)\mu\nu}$$

- $m_q' \to 0$ limit:

$$\partial_\mu (\bar{q}' \gamma^\mu \gamma_5 q') \simeq \frac{\alpha_s}{4\pi} G^{(a)}_{\mu\nu} \tilde{G}^{(a)\mu\nu}$$

- If we take the opposite limit, $m_q' \gg m_\chi$, then the anomaly equation relates a pseudoscalar coupling to the same two-gluon operator:

$$0 \simeq 2m_q' \bar{q}' i\gamma_5 q' + \frac{\alpha_s}{4\pi} G^{(a)}_{\mu\nu} \tilde{G}^{(a)\mu\nu}$$

(term on left-hand side becomes negligible in $m_q' \gg m_\chi$ limit)
\[0 \simeq 2m_{q'} \bar{q}' i \gamma_5 q' + \frac{\alpha_s}{4\pi} G_{\mu\nu}^{(a)} \tilde{G}^{(a)\mu\nu} \]

This describes pseudoscalar decay through a heavy quark triangle in the limit \(m_Q \gg m_A \).

This helps us because of the Adler-Bardeen theorem, which tells us that the anomaly equation holds to all orders in \(\alpha_s \).

Should be able to relate \(\chi\chi \rightarrow gg \) at NLO to \(A \rightarrow gg \) at NLO.

\(A \rightarrow gg \) at NLO calculated by Spira, Djouadi, Graudenz, Zerwas (1995):

\[
\Gamma_{\text{NLO}}(A \rightarrow gg) = \Gamma_{\text{LO}}(A \rightarrow gg) \times \left[1 + \frac{\alpha_s}{\pi} \left(\frac{97}{4} - \frac{7}{6} N_f + \frac{33 - 2N_f}{6} \log \frac{\mu^2}{4m^2_\chi} \right) \right]
\]

Correction is multiplicative in the \(m_Q \gg m_A \) approximation.
How can we use this?

Start with the bare Yukawa Lagrangian for interactions of A^0 with quarks: following Chetyrkin, Kniehl, Steinhauser, Bardeen (1998)

\[
\mathcal{L} = -\frac{A}{v} \left[\sum_{i=1}^{n_l} m_{q_i}^0 \bar{q}_i^0 i\gamma_5 q_i^0 + m_t^0 \bar{t}^0 i\gamma_5 t^0 \right]
\]

Taking the limit $m_t \rightarrow \infty$ and setting $m_{q_i} = 0$ for the light quarks, we can write this as a combination of pseudoscalar operators:

\[
\mathcal{L} = -\frac{A}{v} \left[C_1^0 O_1^0 + C_2^0 O_2^0 + \cdots \right]
\]

where

\[
O_1^0 = G_{\mu\nu}^0, a \tilde{G}_{\mu\nu}^0, a, O_2^0 = \partial_\mu J_5^{0,\mu} \quad \text{with} \quad J_5^{0,\mu} = \sum_{i=1}^{n_l} \bar{q}_i^0 \gamma^\mu \gamma_5 q_i^0
\]

Renormalize the bare Lagrangian:

\[
\mathcal{L} = -\frac{A}{v} \left[C_1 O_1 + C_2 O_2 + \cdots \right],
\]

\[
O_1 = Z_{11} O_1^0 + Z_{12} O_2^0, \quad O_2 = Z_{22} O_2^0.
\]
$A \rightarrow gg$ is the imaginary part of the $A \rightarrow A$ amplitude, described by correlators $\langle O_i O_j \rangle$:

$$\Gamma(A \rightarrow gg) = \frac{\sqrt{2}G_F}{M_A} \left[C_1^2 \text{Im}\langle O_1 O_1 \rangle + 2C_1C_2 \text{Im}\langle O_1 O_2 \rangle + C_2^2 \text{Im}\langle O_2 O_2 \rangle \right]$$

- $\langle O_1 O_1 \rangle \sim \alpha_s^0 + \cdots$ Diagram \longrightarrow
- $\langle O_1 O_2 \rangle \sim \alpha_s^1 + \cdots$ [Need to radiate a gluon from $q\bar{q}$ in O_2 and split a gluon into quarks in O_1.]
- $\langle O_2 O_2 \rangle \sim \alpha_s^2 + \cdots$ [Kinematics kills $\langle O_2 O_2 \rangle$ at leading order for $m_q = 0$. Need to make two boxes and connect the gluons.]

- $C_1 \sim \alpha_s^1$, with no higher order corrections: Adler-Bardeen theorem! $[A G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$ is generated by the top loop.]
- $C_2 \sim \alpha_s^2 + \cdots$ $[A \partial_\mu J_{5\mu}^a$ is generated at two loops by attaching a quark line to the gluons that were generated by the top loop.]

Heather Logan QCD corrections to neutralino annihilation SUSY’06
\[C_1^2 \text{Im}\langle O_1 O_1 \rangle \sim \alpha_s^2 + \cdots \]
\[C_1 C_2 \text{Im}\langle O_1 O_2 \rangle \sim \alpha_s^4 + \cdots \]
\[C_2^2 \text{Im}\langle O_2 O_2 \rangle \sim \alpha_s^6 + \cdots \]

Non-renormalization of \(C_1 \) means we can take the universal QCD corrections to \(\text{Im}\langle O_1 O_1 \rangle \) from \(A \rightarrow gg \) over to \(\chi\chi \rightarrow gg \).

The \(A \rightarrow gg \) calculation transfers directly over to \(\chi\chi \rightarrow gg \) at NLO only:

- **LO**: want \(C_1^2 \text{Im}\langle O_1 O_1 \rangle \) at leading \(\alpha_s^2 \) order.
 - This is just LO \(A \rightarrow gg \).

- **NLO**: want \(C_1^2 \text{Im}\langle O_1 O_1 \rangle \) at NLO, \(\alpha_s^3 \).
 - This is just NLO \(A \rightarrow gg \).

- **NNLO**: want \(C_1^2 \text{Im}\langle O_1 O_1 \rangle \) at NNLO, \(\alpha_s^4 \).
 - Cannot get this simply from \(A \rightarrow gg \), since \(C_1 C_2 \text{Im}\langle O_1 O_2 \rangle \) also contributes at this order.
We get $\chi\chi \rightarrow gg$ at NLO “for free”:

$$v_{\text{rel}}\sigma_{\text{NLO}}(\chi\chi \rightarrow gg) = v_{\text{rel}}\sigma_{\text{LO}}(\chi\chi \rightarrow gg) \times \left[1 + \frac{\alpha_s}{\pi} \left(\frac{97}{4} - \frac{7}{6}N_f + \frac{33 - 2N_f}{6} \log \frac{\mu^2}{4m_{\chi}^2} \right) \right] = v_{\text{rel}}\sigma_{\text{LO}}(\chi\chi \rightarrow gg) [1 + 0.62]$$

where the last line is for $\mu = 2m_{\chi} = 2 \times (100 \text{ GeV})$ and $N_f = 5$.

\[\begin{array}{c}
\text{v}_{\text{rel}} \sigma (\text{pb}) \\
\end{array}\]

\[\begin{array}{c}
\text{v}_{\text{rel}} \sigma_{\text{LO}} (\text{pb}) \\
\text{v}_{\text{rel}} \sigma_{\text{NLO}} (\text{pb}) \\
\end{array}\]

\[\begin{array}{c}
\text{m}_{\chi} \text{(GeV)} \\
\end{array}\]

\rightarrow NLO: scale uncertainty ± 9

\rightarrow LO: scale uncertainty ± 16

Bino; $M_{\tilde{q}} = 200$ GeV

[Barger, Keung, HEL, Shaughnessy, Tregre 2005]

$\chi\chi \rightarrow gg$ cross section is increased by $\sim 60\%$ at NLO.
Dimension-eight amplitude

Remember there were two ways to lift the m_f^2/m_X^2 suppression:
(1) using the anomaly
(2) going to dimension-eight.

The dimension-eight amplitude was calculated for $\chi\chi \to f\bar{f}\gamma$ in
[Flores, Olive, Rudaz 1989]

The full calculation was done in [Drees, Jungman, Kamionkowski, Nojiri 1993].

For $m_q \approx 0$, the leading $1/M_\tilde{q}^8$ part is

$$v_{\text{rel}}\sigma(\chi\chi \to q\bar{q}g) = \frac{4\alpha_s}{15} \frac{m_X^6}{16\pi^2} \left[\frac{|g_\ell|^4}{M_\tilde{q}^8 q_L} + \frac{|g_r|^4}{M_\tilde{q}^8 q_R} \right].$$
Interference term between
(1) dimension-eight $\chi\chi \rightarrow q\bar{q}g$, and
(2) dimension-six $\chi\chi \rightarrow q\bar{q}g$ through the box
with gluon splitting to $q\bar{q}$

- Interference term is order α_s^2 – same order as LO $\chi\chi \rightarrow gg$
- Interference term is order $1/M_\tilde{q}^6$ – more suppressed than $\chi\chi \rightarrow gg$ but less suppressed than pure dimension-eight cross section.

\[
v_{\text{rel}} \sigma = \frac{\alpha_s m_\chi^6 N_f}{\pi M_\tilde{q}^8} \frac{|g_\ell|^4 + |g_r|^4}{60\pi} \quad (\chi\chi \rightarrow q\bar{q}g \text{ tree level})
\]

\[
+ \left(\frac{\alpha_s}{\pi} \right)^2 \frac{m_\chi^2 N_f^2}{M_\tilde{q}^4} \frac{|g_\ell|^2 + |g_r|^2}{32\pi} \left[1 \quad (\chi\chi \rightarrow gg \text{ LO})
\right.
\]

\[
\sim 0.6 \rightarrow + \frac{\alpha_s 221}{\pi 12} \quad (\chi\chi \rightarrow gg \text{ NLO})
\]

preliminary $\rightarrow - \frac{m_\chi^2 2}{M_\tilde{q}^2 3} \quad ($interference term$)$

Degenerate squarks, $\mu = 2m_\chi$, $N_f = 5$; $v_{\text{rel}} \rightarrow 0$ limit

Heather Logan QCD corrections to neutralino annihilation SUSY’06
Where is this useful?

- Early universe: $\chi\chi \rightarrow gg$ typically only a small contribution to the total annihilation cross section. Not particularly important.

- Present day: $\chi\chi \rightarrow gg$ can be the dominant annihilation mode. Corrections are important for total annihilation cross section and branching fractions → can affect indirect DM detection rates.

![Graph showing the relationship between v_{rel} and σ for different annihilation modes.](image)

\(\chi\chi \rightarrow q\bar{q} \) in early universe

\(\chi\chi \rightarrow gg \) (includes NLO)

\(\chi\chi \rightarrow q\bar{q} \) today

Bino; $M_{q} = 200$ GeV Interference term not included – still prelim.

[Barger, Keung, HEL, Shaughnessy, Tregre 2005]
Conclusions

- Precision cosmology motivates calculation at higher orders.

- Majorana neutralinos \rightarrow s-wave annihilation helicity suppressed. Processes that lift the suppression can have a big impact on present-day annihilation rates.

- We calculated NLO QCD corrections to $\chi\chi \rightarrow gg$ by using the Adler-Bardeen theorem and known NLO QCD corrections to $A \rightarrow gg$: about a $+60\%$ effect.

- Interference term between $\chi\chi \rightarrow g^*g \rightarrow q\bar{q}g$ and tree-level $\chi\chi \rightarrow q\bar{q}g$ (in preparation):
 - Same α_s order as LO $\chi\chi \rightarrow gg$
 - Relative m_χ^2/M_q^2 suppression
 - Destructive interference

- Implications for indirect detection still need to be worked out.