Supersymmetry, naturalness and environmental selection

G.F. Giudice

G.F.G., R. Rattazzi, *hep-ph/0606105* [& N. Arkani-Hamed, A. Delgado, G.F.G., NPB 741, 108 (2006)] Hierarchy problem {• Guiding principle for physics BSM • One of the main motivations for LHC

Formulation in terms of criticality:

Supersymmetry:

- Exact susy (and μ =0) \Rightarrow critical line
- Dynamical susy breaking $M_S \sim M_P e^{-1/\alpha} \Rightarrow$ $\begin{cases} small departure from critical line \\ stabilization of flat direction |H_1|=|H_2| \end{cases}$
- For "generic" parameters $\Rightarrow m_{H}^{~2} \sim -M_{S}^{~2}$

Expectations for discovery at LEP: unfulfilled!

"generic" supersymmetry: M_S << Q_C << M_P • unrelated to M_S (depends on c_i , α_a) • much smaller than UV scale $Q_{C} \sim e^{-1/\alpha} M_{P}$

"tuned" supersymmetry: $M_{S} \sim Q_{C} << M_{P}$ $M_{S} < Q_{C}$ broken EW; $M_{S} > Q_{C}$ unbroken EW

mmetry should prefer to be near critical?

Phase diagram of supersymmetric SM

$$V = \frac{g^2 + {g'}^2}{8} \left(\left| H_1 \right|^2 - \left| H_2 \right|^2 \right)^2 + m_1^2 \left| H_1 \right|^2 + m_2^2 \left| H_2 \right|^2 - m_3^2 \left(H_1 H_2 + \text{h.c.} \right)$$

- A measure of the fine tuning
- A characterization of the tuning

STATISTICAL CRITICALITY

Assume soft terms are environmental parameters

Simplest case: m_i=c_i M_S and M_S scans in multiverse

 $Q_C = M_P \times F(c_i, \alpha_a, \lambda_t)$ is fixed

Two possibilities:

1) $M_S > Q_C$: unbroken EW

2) $M_S < Q_C$: broken EW

Impose prior that EW is broken

(analogy with Weinberg)

In "field-theoretical landscapes" we expect
$$N \propto M_{S}^{n}$$

Probability distribution $dP = \begin{cases} n \left(\frac{M_{S}}{Q_{C}}\right)^{n} \frac{dM_{S}}{M_{S}} & \text{for } M_{S} < Q_{C} \\ 0 & \text{for } M_{S} > Q_{C} \end{cases}$
 $\left\langle \frac{M_{Z}^{2}}{M_{S}^{2}} \right\rangle = \frac{2 dm_{2}^{2}}{M_{S}^{2} d \ln Q} \left\langle \ln \frac{Q_{C}}{M_{S}} \right\rangle$
 $= \frac{9 \lambda_{r}^{2}}{4 \pi^{2}} \times \frac{1}{n} \approx \frac{0.15}{n}$
• Susy prefers to be broken at high scale
• Prior sets an upper bound on M_S Susy near-critical
Little hierarchy: Supersymmetry visible at LHC, but not at LEP (*post*-diction) 8

Supersymmetry looks tuned because there many more vacua with $\langle H \rangle = 0$ than with $\langle H \rangle \neq 0$

The level of tuning is dictated by RG running, and it is of the order of a one-loop factor

TESTING STATISTICAL CRITICALITY:

Statistical solution to μ problem

$$\left\langle \frac{m_Z^2}{M_S^2} \right\rangle = \frac{\alpha}{n+m} \qquad \left\langle \frac{\mu^2}{M_S^2} \right\rangle = \frac{\alpha m}{n+m}$$

 $\left\langle \frac{\mu}{M_S} \right\rangle \approx \frac{1}{\left\langle \tan \beta \right\rangle} \approx \sqrt{\text{loop}} \approx \frac{1}{5 - 10}$

- solution to μ problem
- prediction for μ and $tan\beta$
- compatible with well-tempered bino-higgsino

Distribution of susy scale

Denef, Douglas Dine, O'Neil, Sun

3 conditions on complex parameters to have a local minimum $(k_1=0)$, stable $(|k_3|>2|k_2|)$ with susy breaking at M_S $(|a_1|=M_S)$ $dN \propto dM_S^6$

If susy vacua dominate and strong dynamics occur: $dN \propto d \ln M_s$

RECAP: Supersymmetry & Naturalness EW BREAKING

After LEP: a % tuning on soft terms Problem of criticality: Talks by Nomura, Dermisek,dynamicsToro, Okumura, Kitano,
Falkowski, Shirman, Maekawachance?statistics?

DARK MATTER

Quantitative difference after LEP & WMAP:

 $\Omega_{DM} h^2 \!\!=\!\! 0.127 \stackrel{\text{+0.007}}{_{-0.013}}$

For $M_S > M_Z : \chi$ is almost pure state

B-ino: annihilation through sleptons (too slow without coannihilation): $\widetilde{m_e} < 115$ GeV at 95% CL (LEP: $\widetilde{m_e} > 100$ GeV)

H-ino, W-ino: annihilation through gauge bosons (too fast)

DM is possible in "special" regions:

- coannihilation
- Higgs resonance
- "Well-tempered"

or non-thermal

Both M_Z and Ω_{DM} can be reproduced by low-energy supersymmetry, but with "atypical" parameter choices.

Unlucky circumstances or dynamical explanation?

Statistics? (always assumed when tuning is discussed?)

RECAP: Supersymmetry & Environmental Selection

Use of anthropic principle controversial

- Symmetry principles have been very successful
- Lack of predictive power

However:

- Failure of dynamical explanation for CC
- Landscape in string theory
- Predictions are possible: probabilistic (CC, axion) change of perspective (Split

Susy)

Near-criticality of susy?