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Why bother with EDMs?

Is the accuracy sufficient to probe TeV scale and beyond?

Typical energy resoultion in modern EDM experiments

∆Energy ∼ 10−6Hz ∼ 10−21eV

translates to limits on EDMs

|d| < ∆Energy

Electric field
∼ 10−25e× cm

Comparing with theoretically inferred scaling,

d ∼ 10−2 × 1 MeV

Λ2
CP

,

we get sensitivity to

ΛCP ∼ 1 TeV

Comparable with the LHC reach!
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Electric Dipole Moments

Purcell and Ramsey (1949) (“How do we know that strong in-
teractions conserve parity?” −→ |dn| < 3× 10−18ecm.)

H = −µB · S
S
− dE · S

S

d 6= 0 means that both P and T are broken. If CPT holds then
CP is broken as well.

CPT is based on locality, Lorentz invariance and spin-statistics
= very safe assumption.

search for EDM = search for CP violation, if CPT holds

Relativistic generalization

HT,P−odd = −dE · S
S
→ LCP−odd = −di

2
ψσµνγ5ψFµν,

corresponds to dimension five effective operator and naively sug-
gests 1/Mnew physics scaling. Due to SU(2) × U(1) invariance,
however, it scales as mf/M

2.
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Current Experimental Limits

”paramagnetic EDM”, Berkeley experiment

|dTl| < 9× 10−25e cm

”diamagnetic EDM”, U of Washington experiment

|dHg| < 2× 10−28e cm

neutron EDM, ILL-based experiment

|dn| < 3× 10−26e cm

Despite widely different numebrs, the interplay of atomic and
nuclear physics leads to the approximately the same level of
sensitivity to constitutents, dq ∼ O(10−26)ecm.

(In addition, there are valuable but less sensitive results from
Michigan (Xe), Leningrad (n), Amherst College (Cs), ...)
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Expansion of experimental EDM program

Paramagnetic EDMs (electron EDM):
PbO, Yale; de ∼ 10−30ecm
YbF, IC UL; de ∼ 10−29ecm
Solid State experiments, LANL, de ∼ 10−31ecm
Rb and Cs in optical lattices....

Diamagnetic EDMs:
Hg, U of Washington; dHg ∼ 10−29ecm
Rn, TRIUMF et al., dRn ∼ 10−27ecm
Ra, Argonne, dRa ∼ 10−27ecm
Liquid Xe idea, Princeton...

nuclear EDMs:
neutron, ILL-based and PSI-based; dn ∼ 10−27ecm
neutron, LANL-Oak Ridge; dn ∼ 10−28ecm
New BNL project with D in storage ring, dD ∼ 10−28ecm.

Muon EDM down to 10−24ecm.
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CP violation via in CKM matrix

There are two possible sources of CP violation at a renormaliz-
able level: δKM and θQCD.

δKM is the form of CP violation that appears only in the charged
current interactions of quarks.

Lcc =
g√
2

(
ŪLW/

+V DL + (H.c.)
)
.

CP violation is closely related to flavour changing interactions.
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.

CKM model of CP violation is independenly checked using nu-
tral K and B systems. No other sources of CP are needed to
describe observables!

CP violation disappear if any pair of the same charge quarks is
degenerate or some mxing angles vanish.

JCP = Im(VtbV
∗
tdVcdV

∗
cb)×

(y2
t − y2

c )(y
2
t − y2

u)(y
2
c − y2

u)(y
2
b − y2

s)(y
2
b − y2

d)(y
2
s − y2

d)

< 10−15
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Why EDMs are important

γ

W W

d d

gluon

t cb

CKM phase generates tiny EDMs:

dd ∼ Im(VtbV
∗
tdVcdV

∗
cb)αsmdG

2
Fm

2
c × loop suppression

< 10−33ecm

EDMs do not have δKM -induced background. On a flip-side,
δCKM cannot source baryogenesis.

EDMs test

1. Extra amount of CP violation in many models beyond SM

2. Some theories of baryogenesis

3. Mostly scalar-fermion interactions in the theory

4. EDMs are one of the very few low-energy probes that are
sensitive to energy scale of new physics beyond 1 TeV
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From SUSY to an atomic/nuclear EDM

Energy

TeV

atomic

nuclear

QCD

neutron EDM

paramagnetic
    EDMs of

   atoms (Tl)

   EDMs of
diamagnetic
 atoms (Hg)

fundamental CP−odd phases
              (MSSM)

d e θ ,d  , d  , wq q
C   ,C qe qq

NNπg 

βtan        1

Hadronic scale, 1 GeV, is the normalization point where pertur-
bative calculations stop.
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Effective CP-odd Lagrangian at 1 GeV

Khriplovich et al., Weinberg,... Appying EFT, one can classify
all CP-odd operators of dimension 4,5,6,... at µ = 1 GeV.

L1GeV
eff =

g2
s

32π2
θQCDG

a
µν

˜Gµν,a

− i
2

∑

i=e,u,d,s
di ψi(Fσ)γ5ψi −

i

2

∑

i=u,d,s

˜di ψigs(Gσ)γ5ψi

+
1

3
w fabcGa

µν
˜Gνβ,bG µ,c

β +
∑

i,j=e,d,s,b
Cij (ψ̄iψi)(ψ̄jiγ5ψj) + · · ·

If the model of new physics is specified, for example, a specific
paparameter space point in the SUSY model, Wilson coefficients
di, d̃i, etc. can be calculated.

To get beyond simple estimates, one needs dn, atom as a function
of θ, di, d̃i, w, Cij, which requires non-perturbative calculations.
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Strong CP problem

Energy of QCD vacuum depends on θ-angle:

E(θ̄) = −1

2
θ̄2m∗〈qq〉 +O(θ̄4,m2

∗)

where 〈qq〉 is the quark vacuum condensate and m∗ is the re-
duced quark mass, m∗ = mumd

mu+md
. In CP-odd channel,

dn ∼ e
θ̄m∗
Λ2

had

∼ θ̄ · (6× 10−17) e cm

Strong CP problem = naturalness problem = Why |θ̄| < 10−9

when it could have been θ̄ ∼ O(1)? θ̄ can keep ”memory” of
CP violation at Planck scale and beyond. Suggested solutions

• Minimal solution mu = 0 ← apparently can be ruled out
by the chiral theory analysis of other hadronic (CP-even)
observables.

• θ̄ = 0 by construction, requiring either exact P or CP at high
energies + their spontaneous breaking. Tightly constrained
scenario.

• Axion, θ̄ ≡ a(x)/fa, relaxes to E = 0, eliminating theta
term. a(x) is a very light field. Not found so far.
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Does SUSY add anything conceptually new to the story of
Strong CP problem?

Models that have θ̄ = 0 built-in by construction (exact par-
ity and/or exact CP, spontanepously broken at the scale ΛCP )
are sensitive to radiative corrections to θ̄. There are more pos-
sibilities for creating a substantially non-zero θ̄rad through the
soft-breaking phases. Yet in the models where s.b. phases are
nil, and ΛSUSY breaking � ΛCP , corrections to θ̄ are suppressed
due to non-renormalization theorems.
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Synopsis of EDM formulae

Thallium EDM:
The Schiff (EDM screening) theorem is violated by relativistic
(magnetic) effects. Atomic physics to 10− 20% accuracy gives

dTl = −585de − e 43 GeVC
(0)
S

where CS is the coefficient in front of N̄Niēγ5e. Parametric
growth of atomic EDM is de × α2Z3 logZ.

neutron EDM:
∼50-100% level accuracy QCD sum rule evaluation of dn is avail-
able. Ioffe-like approach gives

dn = − em∗θ̄
2π2f 2

π

; dn =
4

3
dd −

1

3
du − e



mn

2πfπ




2 

2

3
d̃d +

1

3
d̃u




(Reproduces naive quark model and comes close to chiral-log
estimates)

Mercury EDM: Screening theorem is avoided by the finite size
of the nucleus

dHg = dHg

(

S(ḡπNN [d̃i, Cq1q2]), CS[Cqe], CP [Ceq], de
)

.

For most models ḡπNN is the most important source. The result
is dominated by d̃u − d̃d but the uncertainty is large:

dHg = 7× 10−3 e (d̃u − d̃d) + ...
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Better accuracy for diamagnetic EDMs can only be achieved via
a more precise value for

〈0|q̄q|0〉〈N |q̄(Gσ)q|N〉 − 〈N |q̄q|N〉〈0|q̄(Gσ)q|0〉
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CP violation from the soft-breaking

Generic MSSM contains many soft-breaking parameters, includ-
ing O(40) (?) complex phases.

L = −µ ¯̃HdH̃u +BµHdHu + (h.c.)

−1

2

(
M3λ̄3λ3 +M2λ̄2λ2 +M1λ̄1λ1

)
+ (h.c.)

−AdHdQ̃d̃ + (h.c.) + ...

With the flavour and gaugino mass universality assumption, the
number of free phases reduces to 2, {θµ, θA}.
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Anatomy of SUSY EDMs

All one-loop and most important (tan β-enhanced) two-loop di-
agrams have been computed.

d g̃d g̃

γ

d̃R
d̃R

d d

d̃L
d̃L

de
eκe

=
g2

1

12
sin θA +



5g2

2

24
+
g2

1

24


 sin θµ tanβ,

dq
eqκq

=
2g2

3

9
( sin θµ[tan β]±1 − sin θA) +O(g2

2, g
2
1), (1)

d̃q
κq

=
5g2

3

18
( sin θµ[tan β]±1 − sin θA) +O(g2

2, g
2
1).

The notation [tan β]±1 implies that one uses the plus(minus)
sign for d(u) quarks, gi are the gauge couplings, and eu = 2e/3,
ed = −e/3. All these contributions to di are proportional to κi,

κi =
mi

16π2M 2
SUSY

= 1.3× 10−25cm× mi

1MeV




1TeV

MSUSY




2

.
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Combining constraints together

In the model where at the weak scale all superpartners have one
and the same mass, MSUSY, both CP-odd phases of the MSSM
are tightly constrained

θµ
π

θΑ
π

Hg

nTl

The combination of the three most sensitive EDM constraints,
dn, dTl and dHg, for MSUSY = 500 GeV, and tan β = 3. The
region allowed by EDM constraints is at the intersection of all
three bands around θA = θµ = 0.
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”SUSY CP Problem”

”Overproduction” of EDMs in SUSY models imply that

sin(δCP)×



1 TeV

MSUSY




2

< 1,

and been dubbed the SUSY CP problem.

Possible solutions:

1. No SUSY around the weak scale.

2. Phases are small. Models of SUSY breaking are arranged
in such a way that δCP ' 0.

3. Superpartner masses are very heavy - in a multi-TeV
range.

4. Accidental cancellations. Unlikely in all three observables.
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Turning numerical with CMSSM

CMSSM (or mSUGRA) = constrained (compassionate?) mini-
mal supersymmetric standard model.

108 parameters −→ (tan β, m0, m1/2, |A0|, θA, θµ).

Benchamrk point B: tan β=10, m1/2 = 250 GeV, m0 = 65 GeV
Benchmark point L: tan β=50, m1/2 = 450 GeV,m0 = 310GeV.
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Electron (or Tl) EDM is more constraining because
m2

squark ' m2
0 + (2.5m1/2)

2,
m2

selectron ' m2
0 + (0.4m1/2)

2,
and usually sleptons are several times lighter than squarks.
Phase of µ is significantly more constrained.
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Scan of m0 and m1/2 in 1 TeV × 1 TeV

Contours of ratios di/|dexp limit
i |.
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Contours of di in extended plots (not shown) in some cases (large
tan β, large θµ remain > 1 beyond 10 TeV.
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Favorite spots in the parameter space

First and Second generation squarks are decoupled. Two-loop
diagrams involving stops and sbottoms are operative (Weinberg; Barr,

Zee; Dai et al.; Chang, Keung, Pilaftsis...) Enhancement by tan β
All squarks and extra Higgses are decoupled (split-susy). Two-
loop diagrams with chargino are operative (Chang, Chang, Keung; Giudice,

Romanino...). Close to current experimental bound.
All superpartners are decoupled, MSSM→ 2HDM. A,H Higgs
exchange becomes important source of CP violation, and grows
as tan3 β (Barr; Pospelov and Lebedev; Babu and Kolda...)
...
Interplay of flavour and CP physics in the soft-breaking. New
flavour structures due to i.e. Yukawa Unification, RH neutri-
nos, Left-Right symmetry, etc. leave an imprint on the squark
and slepton mass matrices via RG evolution, which feed back to
EDMs and FCNCs at the superpartner threshold.
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Dimension 5 operators in superpotential

MSSM is an effective theory. Even if the soft-breaking sector
tuned/constructed to have no CP-violation, higher-dimensional
effective operators can generate EDMs. Some of these operators,
QQQL, DDUE, LHuLHu, have been studied extensively in
connection with proton decay and neutrino masses.

Extra dim=5 operators capable of inducing EDMs:

W =WMSSM +
yh
Λh
HdHuHdHu +

Y qe

Λqe
(UQ)EL

Y qq

Λqq
(UQ)(DQ) +

Ỹ qq

Λqq
(UtAQ)(DtAQ)

Decoupling properties of the observables: ∼ vEW/(msoftΛ(5)).
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Dim 5 of MSSM → Dim 6 of SM
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LCP = − αsImY
qe
1111

6πΛqemsusy
[(ūu)ēiγ5e + (ūiγ5u)ēe]

Assumption of ImY ∼ O(1) gives

Λqe > 3× 108 GeV from Tl EDM

Λqe > 1.5× 108 GeV from Hg EDM

Λqq > 3× 107 GeV from Hg EDM
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Sensitivity to New Threshold

operator sensitivity to Λ (GeV) source

Y qe
3311 ∼ 107 naturalness of me

Im(Y qq
3311) ∼ 1017 naturalness of θ̄, dn

Im(Y qe
ii11) 107 − 109 Tl, Hg EDMs

Y qe
1112, Y

qe
1121 107 − 108 µ→ e conversion

Im(Y qq) 107 − 108 Hg EDM
Im(yh) 103 − 108 de from Tl EDM

In terms of sensitivity to Λ(5), EDMs are the third most sensitive
observable, after proton decay and neutrino masses
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”Effective” EW Baryogenesis

Suppose that the SM degrees of freedom are the only degrees
of freedom with m ∼ 100 GeV, and other particles are heavy,
> 500 GeV.

Leffective = LSM +
∑

CP−even

O(6)

M 2
+

∑

CP−odd

O(6)

M ′2 ,

Can one ”fix” the problems of the SM EWB this way? Are
”model-independent” predictions for ηB and EDMs possible?

Yes. Servant, Wells; Bödeker et al. 2004.

V (φ) = −m2(H†H) + λ(H†H)2 +
1

M 2
(H†H)3

can make strong enough first order phase transition for 300 GeV
< M < 800 GeV.

CP violation comes from

LCP = ytQtRH +
1

M 2
y′tQtRH(H†H),

when y and y′ have relative complex phase. Only the top oper-
ator is important for ηB. Imy′t/M

−2 ≡ (M ′)−2.

µBL would scale as ytv
3
EW/(M

′)2
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Natural level of EDMs predicted by ηB

ηB(M ′;M,mh) vs EDMs(M ′;mh)

Correlated CP-even and CP-odd thresholds, M = M ′

A: The phase is only in the top-Higgs sector.
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Figure 1: Contours of ηB and the EDMs over the Λ vs mh plane, with correlated thresholds, ΛCP = Λ.
On the left, we retain only a single CP -odd phase in the top-Higgs vertex, while on the right the full
set imposed by assuming the Standard Model flavor structure is allowed, which allows the dn bound to
be weakened.
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Correlated CP-even and CP-odd thresholds, M = M ′

B: There is a universal phase in the up-Higgs sector
(Huber, Pospelov, Ritz, in preparation)
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Conclusions

• Electroweak scale SUSY can create EDMs at one
loop level, well above the current experimental
EDM sensitivity

• New generation of experiments will be able to
cover even those corners of parameter space
where one-loop sources are suppressed

• EDM probe the scale of new physics in the su-
perpotential up to scales of 109 GeV

• Electroweak baryogenesis scenario (SUSY or not)
still has some breathing space, which might be
taken away by coming experimental results
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